如圖,在平面直角坐標(biāo)系中,△AOB為直角三角形,A(0,4),B(-3,0).按要求解答下列問(wèn)題:
(1)在平面直角坐標(biāo)系中,先將Rt△AOB向上平移6個(gè)單位,再向右平移3個(gè)單位,畫出平移后的Rt△A1O1B1
(2)在平面直角坐標(biāo)系中,將Rt△A1O1B1繞點(diǎn)O1順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的Rt△A2O1B2;
(3)用點(diǎn)A1旋轉(zhuǎn)到點(diǎn)A2所經(jīng)過(guò)的路徑與O1A1、O1A2圍成的扇形做成一個(gè)圓錐的側(cè)面,求這個(gè)圓錐的高.(保留精確值)

【答案】分析:(1)沿x軸正方向平移3個(gè)單位,再沿y軸負(fù)方向平移1個(gè)單位意思是向右平移3個(gè)單位,再向下平移1個(gè)單位,找到△A1O1B1三個(gè)頂點(diǎn)的位置,連接各點(diǎn)即可;
(2)由△A1O1B1繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到△A2O1B2可得O1A1⊥O1A2,O1B1⊥O1B2,A1B1⊥A2B2,O1A1=O1A2,O1B1=O1B2,A1B1=A2B2,故可畫出△A2O1B2的圖形;
(3)根據(jù)扇形弧長(zhǎng)等于圓錐底面圓周長(zhǎng),求出底面圓的半徑,再利用母線求出圓錐的高.
解答:(1)如圖正確畫出Rt△A1O1B1.(2分)

(2)如圖正確畫出Rt△A2O1B2.(4分)
(3)∵==2π.(6分)
∴圓錐底面圓周長(zhǎng)為2π.
∴圓錐底面圓半徑r==1.(7分)
∴圓錐的高h(yuǎn)==.(8分)
點(diǎn)評(píng):此題主要考查了圓錐的側(cè)面展開圖以及圖象的平移與旋轉(zhuǎn),根據(jù)對(duì)應(yīng)點(diǎn)的變化就是圖形的變化是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案