如圖1,拋物線y=ax2+bx+3與x軸相交于點(diǎn)A(-3,0),B(-1,0),與y軸相交于點(diǎn)C,⊙O1為△ABC的外接圓,交拋物線于另一點(diǎn)D.
(1)求拋物線的解析式;
(2)求cos∠CAB的值和⊙O1的半徑;
(3)如圖2,拋物線的頂點(diǎn)為P,連接BP,CP,BD,M為弦BD中點(diǎn),若點(diǎn)N在坐標(biāo)平面內(nèi),滿足△BMN∽△BPC,請(qǐng)直接寫出所有符合條件的點(diǎn)N的坐標(biāo).

【答案】分析:(1)利用待定系數(shù)法求出拋物線的解析式;
(2)如答圖1所示,由△AOC為等腰直角三角形,確定∠CAB=45°,從而求出其三角函數(shù)值;由圓周角定理,確定△BO1C為等腰直角三角形,從而求出半徑的長(zhǎng)度;
(3)如答圖2所示,首先利用圓及拋物線的對(duì)稱性求出點(diǎn)D坐標(biāo),進(jìn)而求出點(diǎn)M的坐標(biāo)和線段BM的長(zhǎng)度;點(diǎn)B、P、C的坐標(biāo)已知,求出線段BP、BC、PC的長(zhǎng)度;然后利用△BMN∽△BPC相似三角形比例線段關(guān)系,求出線段BN和MN的長(zhǎng)度;最后利用兩點(diǎn)間的距離公式,列出方程組,求出點(diǎn)N的坐標(biāo).
解答:解:(1)∵拋物線y=ax2+bx+3與x軸相交于點(diǎn)A(-3,0),B(-1,0),

解得a=1,b=4,
∴拋物線的解析式為:y=x2+4x+3.

(2)由(1)知,拋物線解析式為:y=x2+4x+3,
∵令x=0,得y=3,
∴C(0,3),
∴OC=OA=3,則△AOC為等腰直角三角形,
∴∠CAB=45°,
∴cos∠CAB=
在Rt△BOC中,由勾股定理得:BC==
如答圖1所示,連接O1B、O1C,
由圓周角定理得:∠BO1C=2∠BAC=90°,
∴△BO1C為等腰直角三角形,
∴⊙O1的半徑O1B=BC=

(3)拋物線y=x2+4x+3=(x+2)2-1,
∴頂點(diǎn)P坐標(biāo)為(-2,-1),對(duì)稱軸為x=-2.
又∵A(-3,0),B(-1,0),可知點(diǎn)A、B關(guān)于對(duì)稱軸x=-2對(duì)稱.
如答圖2所示,由圓及拋物線的對(duì)稱性可知:點(diǎn)D、點(diǎn)C(0,3)關(guān)于對(duì)稱軸對(duì)稱,
∴D(-4,3).
又∵點(diǎn)M為BD中點(diǎn),B(-1,0),
∴M(),
∴BM==
在△BPC中,B(-1,0),P(-2,-1),C(0,3),
由兩點(diǎn)間的距離公式得:BP=,BC=,PC=
∵△BMN∽△BPC,
,即,
解得:BN=,MN=
設(shè)N(x,y),由兩點(diǎn)間的距離公式可得:
,
解之得,,,
∴點(diǎn)N的坐標(biāo)為()或(,).
點(diǎn)評(píng):本題綜合考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、圓的性質(zhì)、相似三角形、勾股定理、兩點(diǎn)間的距離公式等重要知識(shí)點(diǎn),涉及的考點(diǎn)較多,試題難度較大.難點(diǎn)在于第(3)問(wèn),需要認(rèn)真分析題意,確定符合條件的點(diǎn)N有兩個(gè),并畫出草圖;然后尋找線段之間的數(shù)量關(guān)系,最終正確求得點(diǎn)N的坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知二次函數(shù)的圖象是經(jīng)過(guò)點(diǎn)A(1,0),B(3,0),E(0,6)三點(diǎn)的一條拋物線.
(1)求這條拋物線的解析式;
(2)如圖,設(shè)拋物線的頂點(diǎn)為C,對(duì)稱軸交x軸于點(diǎn)D,在y軸正半軸上有一點(diǎn)P,且以A、O、P為頂點(diǎn)的三角形與△ACD相似,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問(wèn)題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
(3)在(2)的條件下,設(shè)拋物線的對(duì)稱軸分別交AB、x軸于點(diǎn)D、M,連接PA、PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB;
(4)在(2)的條件下,設(shè)P點(diǎn)的橫坐標(biāo)為x,△PAB的鉛垂高為h、面積為S,請(qǐng)分別寫出h和S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,矩形ABCD,點(diǎn)C與坐標(biāo)原點(diǎn)O重合,點(diǎn)A在x軸上,點(diǎn)B坐標(biāo)為(3,
3
),求經(jīng)過(guò)A、B、C三點(diǎn)拋物線的解析式;
(2)如圖2,拋物線E:y=-
1
2
x2+bx+c
經(jīng)過(guò)坐標(biāo)原點(diǎn)O,其頂點(diǎn)在y軸左側(cè),以O(shè)為頂點(diǎn)作矩形OADC,A、C為拋物線E上兩點(diǎn),若AC∥x軸,AD=2CD,則拋物線的解析式是
 
;
(3)如圖3,點(diǎn)A、B、C分別為拋物線F:y=ax2+bx+c(a<0)上的點(diǎn),點(diǎn)B在對(duì)稱軸右側(cè),點(diǎn)D在拋物線外,順次連接A、B、C、D四點(diǎn),所成四邊形為矩形,且AC∥x軸,AD=2CD,求矩形ABCD的周長(zhǎng)(用含a的式子表示).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將拋物線y=-
1
2
x2
平移后經(jīng)過(guò)原點(diǎn)O和點(diǎn)A(6,0),平移后的拋物線的頂點(diǎn)為點(diǎn)B,對(duì)稱軸與拋物線y=-
1
2
x2
相交于點(diǎn)C,則圖中直線BC與兩條拋物線圍成的陰影部分的面積為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:
如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問(wèn)題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
(3)設(shè)點(diǎn)P是拋物線(第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),是否存在一點(diǎn)P,使S△PAB=S△CAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案