(2013•濰坊)一漁船在海島A南偏東20°方向的B處遇險,測得海島A與B的距離為20海里,漁船將險情報告給位于A處的救援船后,沿北偏西80°方向向海島C靠近,同時,從A處出發(fā)的救援船沿南偏西10°方向勻速航行,20分鐘后,救援船在海島C處恰好追上漁船,那么救援船航行的速度為(  )
分析:易得△ABC是直角三角形,利用三角函數(shù)的知識即可求得答案.
解答:解:∵∠CAB=10°+20°=30°,∠CBA=80°-20°=60°,
∴∠C=90°,
∵AB=20海里,
∴AC=AB•cos30°=10
3
(海里),
∴救援船航行的速度為:10
3
÷
20
60
=30
3
(海里/小時).
故選D.
點評:本題考查了解直角三角形的應用-方向角問題,根據(jù)方位角的定義得到圖中方位角的度數(shù)是前提條件.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•濰坊)如圖1所示,將一個邊長為2的正方形ABCD和一個長為2、寬為1的長方形CEFD拼在一起,構成一個大的長方形ABEF.現(xiàn)將小長方形CEFD繞點C順時針旋轉至CE′F′D′,旋轉角為a.
(1)當點D′恰好落在EF邊上時,求旋轉角a的值;
(2)如圖2,G為BC中點,且0°<a<90°,求證:GD′=E′D;
(3)小長方形CEFD繞點C順時針旋轉一周的過程中,△DCD′與△CBD′能否全等?若能,直接寫出旋轉角a的值;若不能說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濰坊二模)某公司銷售一種新型節(jié)能產品,現(xiàn)準備從國內和國外兩種銷售方案中選擇一種進行銷售.若只在國內銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關系式為y=-
1
100
x+150,成本為20元/件,無論銷售多少,每月還需支出廣告費62500元,設月利潤為w(元).若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當月銷量為x(件)時,每月還需繳納
1
100
x2元的附加費,設月利潤為w(元).
(1)當x=1000時,y=
140
140
元/件,w=
57500
57500
元;
(2)分別求出w,w與x間的函數(shù)關系式(不必寫x的取值范圍);
(3)當x為何值時,在國內銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內銷售月利潤的最大值相同,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濰坊)如圖是常用的一種圓頂螺桿,它的俯視圖正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濰坊)在某!拔业闹袊鴫簟毖葜v比賽中,有9名學生參加比賽,他們決賽的最終成績各不相同,其中的一名學生要想知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學生成績的( 。

查看答案和解析>>

同步練習冊答案