已知一次函數(shù)與反比例函數(shù)中,x與y的對應(yīng)值如下表:
x | -3 | -2 | -1 | 1 | 2 | 3 |
| -3 |
| 0 | 3 |
| 6 |
| -1 |
| -3 | 3 |
| 1 |
則不等式>的解為 。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知w關(guān)于t的函數(shù):,則下列有關(guān)此函數(shù)圖像的描述正確的是( )
(A)該函數(shù)圖像與坐標(biāo)軸有兩個交點(diǎn) (B)該函數(shù)圖像經(jīng)過第一象限
(C)該函數(shù)圖像關(guān)于原點(diǎn)中心對稱 (D)該函數(shù)圖像在第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖下列四個幾何體,它們各自的三視圖(主視圖、左視圖、俯視圖)中,有兩個相同而另一個不同的幾何體是________
A. ①② B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在⊿ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB于E,交AC于F,過點(diǎn)O作OD⊥AC于D。下列四個結(jié)論:
①以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切;
②∠BOC=90°+∠A;③EF不能成為⊿ABC的中位線;④設(shè)OD=m,AE+AF=n,則S⊿AEF =mn.
其中正確的結(jié)論是:( )
A.①②③ B.①②④ C.②③④ D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線與y軸交于A點(diǎn),與反比例函數(shù)(x>0)的圖象交于點(diǎn)M,過M作MH⊥x軸于點(diǎn)H,且tan∠AHO=.
(1)求k的值;
|
在y軸上是否存在點(diǎn)P,使得PM+PN最小,若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線,被直線所截,∥,∠1=∠2,若∠4=70°,則∠3等于( )(原創(chuàng))
A、 40° B、50° C、70° D、80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
類比、轉(zhuǎn)化、分類討論等思想方法和數(shù)學(xué)基本圖形在數(shù)學(xué)學(xué)習(xí)和解題中經(jīng)常用到,如下是一個案例,請補(bǔ)充完整。(原創(chuàng))
原題:如圖1,在⊙O中,MN是直徑,AB⊥MN于點(diǎn)B,CD⊥MN于點(diǎn)D,∠AOC=90°,AB=3,CD=4,則BD= 。
⑴嘗試探究:如圖2,在⊙O中,MN是直徑,AB⊥MN于點(diǎn)B,CD⊥MN于點(diǎn)D,點(diǎn)E在MN上,∠AEC=90°,AB=3,BD=8,BE:DE=1:3,則CD= (試寫出解答過程)。
⑵類比延伸:利用圖3,再探究,當(dāng)A、C兩點(diǎn)分別在直徑MN兩側(cè),且AB≠CD,AB⊥MN于點(diǎn)B,CD⊥MN于點(diǎn)D,∠AOC=90°時,則線段AB、CD、BD滿足的數(shù)量關(guān)系為 。
⑶拓展遷移:如圖4,在平面直角坐標(biāo)系中,拋物線經(jīng)過A(m,6),B(n,1)兩點(diǎn)(其中0<m<3),且以y軸為對稱軸,且∠AOB=90°,①求mn的值;②當(dāng)S△AOB=10時,求拋物線的解析式。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com