如圖所示,該小組發(fā)現(xiàn)8米高旗桿DE的影子EF落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測算小橋所在圖的半徑的活動。小剛身高1.6米,測得其影長為2.4米,同時測得EG的長為3米,HF的長為1米,測得拱高(弧GH的中點(diǎn)到弦GH的距離,即MN的長)為2米,求小橋所在圓的半徑。

 

【答案】

5米

【解析】解:∵小剛身高1.6米,測得其影長為2.4米,∴由相似得,8米高旗桿DE的影子為:12米。

∵測得EG的長為3米,HF的長為1米,∴GH=12-3-1=8(米)!郍M=MH=4米。,

∵M(jìn)N=2米,∴。

設(shè)小橋所在圓的半徑為r米,

,解得:r=5。

答:小橋所在圓的半徑為5米。

由已知根據(jù)根據(jù)得出旗桿高度,從而得出GM=MH,再利用勾股定理求出半徑即可。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•深圳)如圖所示,該小組發(fā)現(xiàn)8米高旗桿DE的影子EF落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測算小橋所在圓的半徑的活動.小剛身高1.6米,測得其影長為2.4米,同時測得EG的長為3米,HF的長為1米,測得拱高(弧GH的中點(diǎn)到弦GH的距離,即MN的長)為2米,求小橋所在圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,該小組發(fā)現(xiàn)8米高旗桿DE的影子EF落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測算小橋所在圓的半徑的活動.小剛身高1.6米,測得其影長為2.4米,同時測得EG的長為3米,HF的長為1米,測得拱高(弧GH的中點(diǎn)到弦GH的距離,即MN的長)為2米,求小橋所在圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,該小組發(fā)現(xiàn)8米高旗桿DE的影子EF落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測算小橋所在圓的半徑的活動.小剛身高1.6米,測得其影長為2.4米,同時測得EG的長為3米,HF的長為1米,測得拱高(弧GH的中點(diǎn)到弦GH的距離,即MN的長)為2米,求小橋所在圓的半徑.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,該小組發(fā)現(xiàn)8米高旗桿DE的影子EF落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測算小橋所在圓的半徑的活動.小剛身高1.6米,測得其影長為2.4米,同時測得EG的長為3米,HF的長為1米,測得拱高(弧GH的中點(diǎn)到弦GH的距離,即MN的長)為2米,求小橋所在圓的半徑.

查看答案和解析>>

同步練習(xí)冊答案