【題目】2019年雙“十一”期間,天貓商場某書店制定了促銷方案:若一次性購書超過300元,其中300元按九五折優(yōu)惠,超過300元的部分按八折優(yōu)惠.
(1)設(shè)一次性購買的書籍原價是a元,當(dāng)a超過300時,實際付款 元;(用含a的代數(shù)式表示,并化簡)
(2)若小明購書時一次性付款365元,則所購書籍的原價是多少元?
(3)小冬在促銷期間先后兩次下單購買書籍,兩次所購書籍的原價之和為600元(第一次所購書籍的原價高于第二次),兩次實際共付款555元,則小冬兩次購物所購書籍的原價分別是多少元?
【答案】(1);(2)400;(3)450元和150元
【解析】
(1)根據(jù)題干中的優(yōu)惠方案用代數(shù)式表示即可;
(2)設(shè)購書的原價為b元,根據(jù)題意列出方程,解之即可;
(3)設(shè)第一次購買書籍為c元,根據(jù)第一次所購書籍的原價高于第二次判斷出第一次原價大于300,第二次原價小于300,可列方程求解.
解:(1)(a-300)×80%+300×95%=;
(2)設(shè)購書的原價為b元,因為365>300,所以b>300,
則可得方程:(b-300)×80%+300×95%=365
解得b=400,
答:所購書籍的原價是400元;
(3)設(shè)第一次購買書籍為c元,根據(jù)題意:c>300,即第一次原價大于300,第二次原價小于300,根據(jù)(1)可列方程為
0.8c+45+(600-c)=555
解得:c=450,
600-450=150(元),
答:小冬兩次購物所購書籍的原價分別是450元、150元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人勻速從同一地點到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以50米/分的速度沿同一路線行走.設(shè)甲乙兩人相距s(米),甲行走的時間為t(分),s關(guān)于t的函數(shù)圖象的一部分如圖所示.下列結(jié)論正確的個數(shù)是( )
(1)t=5時,s=150;(2)t=35時,s=450;(3)甲的速度是30米/分;(4)t=12.5時,s=0.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊直角三角板,且∠C=90°,∠A=30°,現(xiàn)將圓心為點O的圓形紙片放置在三角板內(nèi)部.
(1)如圖①,當(dāng)圓形紙片與兩直角邊AC、BC都相切時,試用直尺與圓規(guī)作出射線CO;(不寫作法與證明,保留作圖痕跡)
(2)如圖②,將圓形紙片沿著三角板的內(nèi)部邊緣滾動1周,回到起點位置時停止,若BC=9,圓形紙片的半徑為2,求圓心O運動的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】結(jié)合數(shù)軸與絕對值的知識回答下列問題:
(1)數(shù)軸上表示4和1的兩點之間的距離是 ;表示-3和2兩點之間的距離是 ;一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點之間的距離等于.如果表示數(shù)和-2的兩點之間的距離是3,那么= ;
(2)若數(shù)軸上表示數(shù)的點位于-4與2之間,求+的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明為了測量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達坡頂D處.已知斜坡的坡角為15°.(以下計算結(jié)果精確到0.1m)
(1)求小明此時與地面的垂直距離CD的值;
(2)小明的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(sin15°≈0.2588,cos15°≈0.9659 ,tan≈.0.2677 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)的部分圖像,其中點A(-1,0)是x軸上的一個交點,點C是y軸上的交點.
(1)若過點A的直線l與這個二次函數(shù)的圖像的另一個交點為D,與該圖像的對稱軸交于點E,與y軸交于點F,且DE=EF=FA.
①求的值;
②設(shè)這個二次函數(shù)圖像的頂點為P,問:以DF為直徑的圓能否經(jīng)過點P?若能,請求出此時二次函數(shù)的關(guān)系式;若不能,請說明理由.
(2)若點C坐標(biāo)為(0,-1),設(shè)S=a+b+c ,求S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把幾個圖形拼成一個新的圖形,再通過兩種不同的方法計算同一個圖形的面積,可以得到一個等式,也可以求出一些不規(guī)則圖形的面積.
例如,由圖1,可得等式:(a+2b)(a+b)=a2+3ab+2b2
(1)如圖2,將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,試用不同的形式表示這個大正方形的面積,你能發(fā)現(xiàn)什么結(jié)論?請用等式表示出來.
(2)利用(1)中所得到的結(jié)論,解決下面的問題: 已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.
(3)如圖3,將兩個邊長分別為a和b的正方形拼在一起,B,C,G三點在同一直線上,連接BD和BF.若這兩個正方形的邊長滿足a+b=10,ab=20,請求出陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,點P是AB上一動點.若△PAD與△PBC是相似三角形,則滿足條件的點P的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com