【題目】如圖,已知ABCD,AB>AD,分別以點(diǎn)A,C為圓心,以AD,CB長(zhǎng)為半徑作弧,交AB,CD于點(diǎn)E,F(xiàn),連接AF,CE.求證:AF=CE.

【答案】解:∵四邊形ABCD是平行四邊形,
∴AB∥CD,AD=BC,
根據(jù)題意得:AE=AD,CF=BC,
∴AE=CF,
又∵AE∥CF,
∴四邊形AECF是平行四邊形,
∴AF=CE.
【解析】根據(jù)平行四邊形的性質(zhì)和已知條件得出AE=CF,AE∥CF,證出四邊形AECF是平行四邊形,即可得出AF=CE.
【考點(diǎn)精析】本題主要考查了平行四邊形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握若一直線過(guò)平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】母親節(jié)前夕,某淘寶店主從廠家購(gòu)進(jìn)A、B兩種禮盒,已知A、B兩種禮盒的單價(jià)比為2:3,單價(jià)和為200元.

(1)求A、B兩種禮盒的單價(jià)分別是多少元?

(2)該店主購(gòu)進(jìn)這兩種禮盒恰好用去9600元,且購(gòu)進(jìn)A種禮盒最多36個(gè),B種禮盒的數(shù)量不超過(guò)A種禮盒數(shù)量的2倍,共有幾種進(jìn)貨方案?

(3)根據(jù)市場(chǎng)行情,銷售一個(gè)A鐘禮盒可獲利10元,銷售一個(gè)B種禮盒可獲利18元.為奉獻(xiàn)愛心,該店主決定每售出一個(gè)B種禮盒,為愛心公益基金捐款m元,每個(gè)A種禮盒的利潤(rùn)不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時(shí)店主獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面列出的不等式中,正確的是(  )

A. a不是負(fù)數(shù),可表示成a0 B. x不大于3,可表示成x3

C. m4的差是負(fù)數(shù),可表示成m40 D. x2的和是非負(fù)數(shù),可表示成x20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y=mx+5的圖象經(jīng)過(guò)點(diǎn)A(1,4)、B(n , 2).

(1)求mn的值;
(2)當(dāng)函數(shù)圖象在第一象限時(shí),自變量x的取值范圍是什么?
(3)在x軸上找一點(diǎn)P,使PA+PB最短。求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:a3﹣9a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC,AB=AC,AD是△ABC的角平分線,EF垂直平分AC,分別交AC,AD,AB于點(diǎn)E,M,F(xiàn).若∠CAD=20°,求∠MCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,動(dòng)點(diǎn)M從點(diǎn)B出發(fā),在BA邊上以每秒2cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)C出發(fā),在CB邊上以每秒cm的速度向點(diǎn)B勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0≤t≤5),連接MN.

(1)若BM=BN,求t的值;

(2)若△MBN與△ABC相似,求t的值;

(3)當(dāng)t為何值時(shí),四邊形ACNM的面積最?并求出最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù)yx2mx+m2

1)求證:無(wú)論m為任何實(shí)數(shù),該二次函數(shù)的圖象與x軸都有兩個(gè)交點(diǎn);

2)若圖象經(jīng)過(guò)原點(diǎn),求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,兩動(dòng)點(diǎn)D,E分別從點(diǎn)A,點(diǎn)B同時(shí)出發(fā)向點(diǎn)O運(yùn)動(dòng)(運(yùn)動(dòng)到點(diǎn)O停止),運(yùn)動(dòng)速度分別是1個(gè)單位長(zhǎng)度/秒和個(gè)單位長(zhǎng)度/秒,設(shè)運(yùn)動(dòng)時(shí)間為t秒,以點(diǎn)A為頂點(diǎn)的拋物線經(jīng)過(guò)點(diǎn)E,過(guò)點(diǎn)E作x軸的平行線,與拋物線的另一個(gè)交點(diǎn)為點(diǎn)G,與AB相交于點(diǎn)F.

(1)求點(diǎn)A,點(diǎn)B的坐標(biāo);

(2)用含t的代數(shù)式分別表示EF和AF的長(zhǎng);

(3)當(dāng)四邊形ADEF為菱形時(shí),試判斷△AFG與△AGB是否相似,并說(shuō)明理由.

(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時(shí)拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案