【題目】已知(x+a)(x+b)=x2﹣13x+36,則a+b=( 。
A.-5
B.5
C.-13
D.﹣13或5

【答案】C
【解析】解:∵(x+a)(x+b)=x2﹣13x+36,
∴x2+(a+b)x+ab=x2﹣13x+36,
∴a+b=﹣13.
故選:C.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用多項(xiàng)式乘多項(xiàng)式,掌握多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果9x2+kx+25是一個(gè)完全平方式,那么k的值是( )
A.15
B.±5
C.30
D.±30

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)F在邊BC上,且AF=AD,過(guò)點(diǎn)DDEAF,垂足為點(diǎn)E

1)求證:DE=AB

2)以A為圓心,AB長(zhǎng)為半徑作圓弧交AF于點(diǎn)G,若BF=FC=1,求扇形ABG的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一道多項(xiàng)式化簡(jiǎn)題已知A=, B= , C=

ABC 的值明明同學(xué)做了之后,發(fā)現(xiàn)值與x無(wú)關(guān)你覺得明明的做法正確嗎?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠AOB=,P為∠AOB內(nèi)部一點(diǎn),點(diǎn)P關(guān)于OA、OB的對(duì)稱點(diǎn)分別為P1、P2,則△OP1P2_______________三角形;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知p是數(shù)軸上表示-2的點(diǎn),把p點(diǎn)移動(dòng)3個(gè)單位長(zhǎng)度后,p點(diǎn)表示的數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,且∠BAO=30°,現(xiàn)將△OAB沿直線AB翻折,得到△CAB. 連接OC交AB于點(diǎn)D.

1)求證:ADOC,ODOA ;

2)若RtAOB的斜邊AB,則OB_____;OA_____;點(diǎn)C的坐標(biāo)為_______;

3)在(2)的條件下,動(dòng)點(diǎn)F從點(diǎn)O出發(fā),以2個(gè)單位長(zhǎng)度/秒的速度沿折線O﹣A﹣C向終點(diǎn)C運(yùn)動(dòng),設(shè)FOB的面積為SS0),點(diǎn)F的運(yùn)動(dòng)時(shí)間為t秒,求St的關(guān)系式,并直接寫出t的取值范圍;

4)在(3)的條件下,過(guò)點(diǎn)BBEx軸,交AC于點(diǎn)E,在動(dòng)點(diǎn)F的運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),BEF是以BE為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線AC、BD交于點(diǎn)OEF過(guò)點(diǎn)O且與BC、AD分別交于點(diǎn)EF.試猜想線段AE、CF的關(guān)系,并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】開學(xué)整理教室時(shí),老師總是先把每一列最前和最后的課桌擺好,然后再依次擺中間的課桌,一會(huì)兒一列課桌擺在一條線上,整整齊齊,這是因?yàn)?/span>

查看答案和解析>>

同步練習(xí)冊(cè)答案