如圖,已知點(diǎn)出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿軸向正方向運(yùn)動(dòng),以為頂點(diǎn)作菱形,使點(diǎn)在第一象限內(nèi),且;以為圓心,為半徑作圓.設(shè)點(diǎn)運(yùn)動(dòng)了秒,求:

(1)點(diǎn)的坐標(biāo)(用含的代數(shù)式表示);

(2)當(dāng)點(diǎn)在運(yùn)動(dòng)過(guò)程中,所有使與菱形的邊所在直線相切的的值.

 

【答案】

解:(1)過(guò)軸于,

 

,,

,

點(diǎn)的坐標(biāo)為

(2)①當(dāng)相切時(shí)(如圖1),切點(diǎn)為,此時(shí)

,

②當(dāng),即與軸相切時(shí)(如圖2),則切點(diǎn)為,

過(guò),則

,

③當(dāng)所在直線相切時(shí)(如圖3),設(shè)切點(diǎn)為,

,

過(guò)軸于,則,

,

化簡(jiǎn),得,

解得,

,

所求的值是,

【解析】(1)過(guò)軸于,利用三角函數(shù)求得OD、DC的長(zhǎng),從而求得點(diǎn)的坐標(biāo)

⊙P與菱形OABC的邊所在直線相切,則可與OC相切;或與OA相切;或與AB相切,應(yīng)分三種情況探討:①當(dāng)圓P與OC相切時(shí),如圖1所示,由切線的性質(zhì)得到PC垂直于OC,再由OA=+t,根據(jù)菱形的邊長(zhǎng)相等得到OC=1+t,由∠AOC的度數(shù)求出∠POC為30°,在直角三角形POC中,利用銳角三角函數(shù)定義表示出cos30°=oc/op,表示出OC,

等于1+t列出關(guān)于t的方程,求出方程的解即可得到t的值;②當(dāng)圓P與OA,即與x軸相切時(shí),過(guò)P作PE垂直于OC,又PC=PO,利用三線合一得到E為OC的中點(diǎn),OE為OC的一半,而OE=OPcos30°,列出關(guān)于t的方程,求出方程的解即可得到t的值;③當(dāng)圓P與AB所在的直線相切時(shí),設(shè)切點(diǎn)為F,PF與OC交于點(diǎn)G,由切線的性質(zhì)得到PF垂直于AB,則PF垂直于OC,由CD=FG,在直角三角形OCD中,利用銳角三角函數(shù)定義由OC表示出CD,即為FG,在直角三角形OPG中,利用OP表示出PG,用PG+GF表示出PF,根據(jù)PF=PC,表示出PC,過(guò)C作CH垂直于y軸,在直角三角形PHC中,利用勾股定理列出關(guān)于t的方程,求出方程的解即可得到t的值,綜上,得到所有滿足題意的t的值.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A從(1,0)出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿x軸向正方向運(yùn)動(dòng),以O(shè),精英家教網(wǎng)A為頂點(diǎn)作菱形OABC,使點(diǎn)B,C在第一象限內(nèi),且∠AOC=60°;以P(0,3)為圓心,PC為半徑作圓.設(shè)點(diǎn)A運(yùn)動(dòng)了t秒,求:
(1)點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);
(2)當(dāng)點(diǎn)A在運(yùn)動(dòng)過(guò)程中,所有使⊙P與菱形OABC的邊所在直線相切的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A,B分別在x軸和y軸上,且OA=OB=3
2
,點(diǎn)C的坐標(biāo)是C(
7
2
2
,
7
2
2
)
,AB與OC相交于點(diǎn)G.點(diǎn)P從O出發(fā)以每秒1個(gè)單位的速度從O運(yùn)動(dòng)到C,過(guò)P作直線EF∥AB分別交OA,OB于E,F(xiàn).解答下列問(wèn)題:
(1)直接寫出點(diǎn)G的坐標(biāo)和直線AB的解析式.
(2)若點(diǎn)P運(yùn)動(dòng)的時(shí)間為t,直線EF在四邊形OACB內(nèi)掃過(guò)的面積為s,請(qǐng)求出s與t的函數(shù)關(guān)系式;并求出當(dāng)t為何值時(shí),直線EF平分四邊形OACB的面積.
(3)設(shè)線段OC的中點(diǎn)為Q,P運(yùn)動(dòng)的時(shí)間為t,求當(dāng)t為何值時(shí),△EFQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年初中畢業(yè)升學(xué)考試(江蘇無(wú)錫卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,已知點(diǎn)出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿軸向正方向運(yùn)動(dòng),以為頂點(diǎn)作菱形,使點(diǎn)在第一象限內(nèi),且;以為圓心,為半徑作圓.設(shè)點(diǎn)運(yùn)動(dòng)了秒,求:
(1)點(diǎn)的坐標(biāo)(用含的代數(shù)式表示);
(2)當(dāng)點(diǎn)在運(yùn)動(dòng)過(guò)程中,所有使與菱形的邊所在直線相切的的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿軸向正方向運(yùn)動(dòng),以為頂點(diǎn)作菱形,使點(diǎn)在第一象限內(nèi),且;以為圓心,為半徑作圓.設(shè)點(diǎn)運(yùn)動(dòng)了秒,求:

(1)點(diǎn)的坐標(biāo)(用含的代數(shù)式表示);

(2)當(dāng)點(diǎn)在運(yùn)動(dòng)過(guò)程中,所有使⊙與菱形的邊所在直線相切的的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案