如圖,O為矩形ABCD的中心,M為BC邊上一點(diǎn),N為DC邊上一點(diǎn),ONOM,若AB=6,AD=4,設(shè)OM=x,ON=y(tǒng),則y與x的函數(shù)關(guān)系式為________

答案:
解析:

  答案為:y=x

  分析.求兩條線段的關(guān)系,把兩條線段放到兩個(gè)三角形中,利用兩個(gè)三角形的關(guān)系求解.

  解答.解:如圖,作OF⊥BC于F,OE⊥CD于E,

  ∵ABCD為矩形

  ∴∠C=90°

  ∵OF⊥BC,OE⊥CD

  ∴∠EOF=90°

  ∴∠EON+∠FON=90°

  ∵ON⊥OM

  ∴∠EON=∠FOM

  ∴△OEN∽△OFM

  

  ∵O為中心

  ∴

  ∴

  即y=x,

  故答案為:y=x,

  點(diǎn)評.此題主要考查的是相似三角形的判定與性質(zhì),解題的關(guān)鍵是合理的在圖中作出輔助線,熟練掌握相似三角形的判定定理和性質(zhì).


提示:

考點(diǎn).相似三角形的判定與性質(zhì);矩形的性質(zhì).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,在等邊△ABC中,點(diǎn)D是BC邊的中點(diǎn),以AD為邊作等邊△ADE.
(1)求∠CAE的度數(shù);
(2)取AB邊的中點(diǎn)F,連接CF、CE,試證明四邊形AFCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊三角形ABC,邊長為2,AD是BC邊上的高.
(1)在△ABC內(nèi)部作一個(gè)矩形EFGH(如圖1),其中E、H分別在邊AB、AC上,F(xiàn)G在邊BC上.
①設(shè)矩形的一邊FG=x,那么EF=
 
.(用含有x的代數(shù)式表示)
②設(shè)矩形的面積為y,當(dāng)x取何值時(shí),y的值最大,最大值是多少?
(2)在圖2中,只用圓規(guī)畫出點(diǎn)E,使得上述矩形EFGH面積最大.寫出畫法,并保留作圖痕跡.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個(gè)非直角頂點(diǎn)的線段叫做這個(gè)損矩形的直徑.
(1)如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段
 

(2)在線段AC上確定一點(diǎn)P,使損矩形的四個(gè)頂點(diǎn)都在以P為圓心的同一圓上(即損矩形的四個(gè)頂點(diǎn)在同一個(gè)圓上),請作出這個(gè)圓,并說明你的理由.友情提醒:“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.
(3)如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連接BD,當(dāng)BD平分∠ABC時(shí),判斷四邊形ACEF為何種特殊的四邊形?請說明理由.若此時(shí)AB=3,BD=4
2
,求BC的長.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形DEFG是△ABC的內(nèi)接矩形,如果△ABC的高線AH長8cm,底邊BC長10cm,設(shè)DG=xcm,DE=ycm,則y關(guān)于x的函數(shù)關(guān)系式為
y=-
4
5
x+8
y=-
4
5
x+8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,在平行四邊形ABCD中,E、F為BC上兩點(diǎn),且BE=CF,AF=DE.
求證:①△ABF≌△DCE;②四邊形ABCD是矩形.
(2)如圖2,已知△ABC是等邊三角形,D點(diǎn)是AC的中點(diǎn),延長BC到E,使CE=CD.
①請用尺規(guī)作圖的方法,過點(diǎn)D作DM⊥BE,垂足為M;(不寫作法,保留作圖痕跡)
②求證:BM=EM.

查看答案和解析>>

同步練習(xí)冊答案