如圖所示,正方形的面積為12,是等邊三角形,點(diǎn)在正方形
內(nèi),在對角線上有一點(diǎn),使的和最小,則這個最小值為       .
連接BD,交AC于O,根據(jù)正方形的性質(zhì)推出D和B關(guān)于AC對稱,則P在BE和AC的交點(diǎn)上時,PD+PE最小,根據(jù)正方形的面積求出BE即可.
解:連接BD,交AC于O,
∵正方形ABCD,
∴OD=OB,AC⊥BD,
∴D和B關(guān)于AC對稱,
則BE交于AC的點(diǎn)是P點(diǎn),此時PD+PE最小,
∵在AC上取任何一點(diǎn)(如Q點(diǎn)),QD+QE都大于PD+PE(BE),
∴此時PD+PE最小,
此時PD+PE=BE,
∵正方形的面積是12,等邊三角形ABE,
∴BE=AB==2
即最小值是2,
本題考查了正方形的性質(zhì),等邊三角形的性質(zhì),軸對稱-最短路線問題等知識點(diǎn)的應(yīng)用,關(guān)鍵是找出PD+PE最小時P點(diǎn)的位置,題型較好,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

順次連接對角線相等的四邊形四邊中點(diǎn)所得的四邊形是        (     )
A.梯形B.菱形C.矩形D.正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分6分)如圖, F、C是線段AD上的兩點(diǎn),AB∥DE,BC∥EF,AF=DC,
連結(jié)AE、BD,求證:四邊形ABDE是平行四邊形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分4分)
(1)如圖①兩個正方形的邊長均為3,求三角形DBF的面積.
(2)如圖②,正方形ABCD的邊長為3,正方形CEFG的邊長為1, 求三角形DBF的面積.
(3)如圖③,正方形ABCD的邊長為a,正方形CEFG的邊長為,求三角形DBF的面積.

從上面計算中你能得到什么結(jié)論.
結(jié)論是:
(沒寫結(jié)論也不扣分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分,第(1)小題滿分6分,第(2)小題滿分6分)如圖7,等腰三角形ABC中,AB=AC,AH垂直BC,點(diǎn)E是AH上一點(diǎn),延長AH至點(diǎn)F,使FH=EH,
(1)求證:四邊形EBFC是菱形;
(2)如果=,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)如圖8,在菱形ABCD中,AE⊥BC,AF⊥CD,垂足為E、F.
(1)求證:△ABE≌△ADF;
(2)若∠BAE=∠EAF,求證:AE=BE;
(3)若對角線BD與AE、AF交于點(diǎn)M、N,且BM=MN(如圖9).
求證:∠EAF=2∠BAE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD中,點(diǎn)E在邊AB上,點(diǎn)G在邊AD上,且∠ECG
=45°,點(diǎn)F在邊AD的延長線上,且DF= BE.則下列結(jié)論:①∠ECB是銳角,;
②AE<AG;③△CGE≌△CGF;④EG= BE+GD中一定成立的結(jié)論有    ▲    
(寫出全部正確結(jié)論).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2011四川瀘州,15,3分)矩形ABCD的對角線相交于點(diǎn)O,AB=4cm,∠AOB=60°,則矩形的面積為       cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分11分)如圖,在梯形ABCD中,AD∥BC,BC=2AD,點(diǎn)F、G分別是邊BC、CD的中點(diǎn),連接AF、FG,過點(diǎn)D作DE∥FG交AF于點(diǎn)E。
(1)求證:△AED≌△CGF;
(2)若梯形ABCD為直角梯形,∠B=90°,判斷四邊形DEFG是什么特殊四邊形?并證明你的結(jié)論;
(3)若梯形ABCD的面積為a(平方單位),則四邊形DEFG的面積為      (平方單位)。(只寫結(jié)果,不必說理)

查看答案和解析>>

同步練習(xí)冊答案