如圖,在平面直角坐標(biāo)系中,等腰直角的斜邊軸上,頂點(diǎn)的坐標(biāo)為,為斜邊上的高.拋物線與直線交于點(diǎn),點(diǎn)的橫坐標(biāo)為.點(diǎn)軸的正半軸上,過(guò)點(diǎn)軸.交射線于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為,以為頂點(diǎn)的四邊形的面積為

(1)求所在直線的解析式;
(2)求的值;
(3)當(dāng)時(shí),求的函數(shù)關(guān)系式;
(4)如圖,設(shè)直線交射線于點(diǎn),交拋物線于點(diǎn).以為一邊,在的右側(cè)作矩形,其中.直接寫(xiě)出矩形重疊部分為軸對(duì)稱圖形時(shí)的取值范圍.

(1);(2);(3)當(dāng)時(shí),;當(dāng)時(shí),S
(4).

解析試題分析:(1)已知了A點(diǎn)的坐標(biāo),即可求出正比例函數(shù)直線OA的解析式;
(2)根據(jù)C點(diǎn)的橫坐標(biāo)以及直線OC的解析式,可確定C點(diǎn)坐標(biāo),將其代入拋物線的解析式中即可求出待定系數(shù)a的值;
(3)已知了A點(diǎn)的坐標(biāo),即可求出OD、AD的長(zhǎng),由于△OAB是等腰直角三角形,即可確定OB的長(zhǎng);欲求四邊形ABDE的面積,需要分成兩種情況考慮:
①0<m<3時(shí),P點(diǎn)位于線段OD上,此時(shí)陰影部分的面積為△AOB、△ODE的面積差;
②m>3時(shí),P點(diǎn)位于D點(diǎn)右側(cè),此時(shí)陰影部分的面積為△OBE、△OAD的面積差;
根據(jù)上述兩種情況陰影部分的面積計(jì)算方法,可求出不同的自變量取值范圍內(nèi),S、m的函數(shù)關(guān)系式;
(4)若矩形RQMN與△AOB重疊部分為軸對(duì)稱圖形,首先要找出其對(duì)稱軸;
①由于直線OA的解析式為y=x,若設(shè)QM與OA的交點(diǎn)為H,那么∠QEH=45°,△QEH是等腰直角三角形;那么當(dāng)四邊形QRNM是正方形時(shí),重合部分是軸對(duì)稱圖形,此時(shí)的對(duì)稱軸為QN所在的直線;可得QR=RN,由此求出m的值;
②以QM、RN的中點(diǎn)所在直線為對(duì)稱軸,此時(shí)AD所在直線與此對(duì)稱軸重合,可得PD=RN=,由OP=OD-PD即可求出m的值;
③當(dāng)P、D重合時(shí),根據(jù)直線OC的解析式y(tǒng)=x知:RD=;此時(shí)R是AD的中點(diǎn),由于RN∥x軸,且RN==DB,所以N點(diǎn)恰好位于AB上,RN是△ABD的中位線,此時(shí)重合部分是等腰直角三角形REN,由于等腰直角三角形是軸對(duì)稱圖形,所以此種情況也符合題意,此時(shí)OP=OD=3,即m=3;
當(dāng)R在AB上時(shí),根據(jù)直線OC的解析式可用m表示出R的縱坐標(biāo),即可得到PR、PB的表達(dá)式,根據(jù)PR=PB即可求出m的值;
根據(jù)上述三種軸對(duì)稱情況所得的m的值,及R在AB上時(shí)m的值,即可求得m的取值范圍.
(1)設(shè)直線OA的解析式為y=kx,
則有:3k=3,k=1;
∴直線的解析式為;
(2)當(dāng)x=6時(shí),y=x=3,
∴C(6,3);
將C(6,3)代入拋物線的解析式中,
得:36a+12=3,解得
(3)當(dāng)時(shí),如圖①,

;
當(dāng)時(shí),如圖②,



(4).
考點(diǎn):二次函數(shù)的綜合題
點(diǎn)評(píng):此類問(wèn)題綜合性強(qiáng),難度較大,在中考中比較常見(jiàn),一般作為壓軸題,題目比較典型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案