如圖,已知⊙O的半徑OA=,弦AB=4,點C在弦AB上,以點C為圓心,CO為半徑的圓與線段OA相交于點E.
(1)求cosA的值;
(2)設(shè)AC=x,OE=y,求y與x之間的函數(shù)解析式,并寫出定義域;
(3)當(dāng)點C在AB上運(yùn)動時,⊙C是否可能與⊙O相切?如果可能,請求出當(dāng)⊙C與⊙O相切時的AC的長;如果不可能,請說明理由.

【答案】分析:(1)過點O作OD⊥AB,垂足為D,根據(jù)垂徑定理求得AD=2;然后利用三角函數(shù)值的定義求得cosA的值;
(2)過點C作CF⊥OE,垂足為F.根據(jù)垂徑定理求得OF=;然后在Rt△ACF中,由三角函數(shù)值的定義求得AF=AC•cosA=x,再根據(jù)圖形知AF+OF=OA,據(jù)此列出函數(shù)關(guān)系式
y=2x;最后求定義域;
(3)在Rt△AOD中,利用勾股定理求得OD=1.當(dāng)⊙C與⊙O相切時,由垂徑定理求得OC的長度,然后由勾股定理知CD=|AD-AC|=|2-x|,OD2+CD2=OC2,所以將其代入函數(shù)關(guān)系式,得到12+(2-x)2=;最后通過解方程知當(dāng)⊙C與⊙O相切時的AC的長為
解答:解:(1)過點O作OD⊥AB,垂足為D,
∵AB是⊙O的弦,∴AD=AB=2,(1分)
∴cosA=.(1分)

(2)過點C作CF⊥OE,垂足為F,
∵OE是⊙C的弦,OF=
在Rt△ACF中,AF=AC•cosA=x,(1分)
∵AF+OF=OA,∴.(1分)
∴函數(shù)解析式為y=2x.(1分)
函數(shù)定義域為.(1分)

(3)⊙C可能與⊙O相切.
在Rt△AOD中,OD==1.
當(dāng)⊙C與⊙O相切時,OC=,(1分)
∵CD=|AD-AC|=|2-x|,OD2+CD2=OC2,
∴12+(2-x)2=.(1分)
∴x1=.(1分)
當(dāng)x=時,⊙C與OA相切于點O,不符合題意.
∴當(dāng)⊙C與⊙O相切時的AC的長為.(1分)
點評:本題綜合考查了切線的判定、垂徑定理、解直角三角形以及勾股定理.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O的半徑為6cm,射線PM經(jīng)過點O,OP=10cm,射線PN與⊙O相切于點Q.A,B兩點同時從點精英家教網(wǎng)P出發(fā),點A以5cm/s的速度沿射線PM方向運(yùn)動,點B以4cm/s的速度沿射線PN方向運(yùn)動.設(shè)運(yùn)動時間為ts.
(1)求PQ的長;
(2)當(dāng)t為何值時,直線AB與⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為1,銳角△ABC內(nèi)接于⊙O,作BD⊥AC于點D,OM⊥AB于點M.sin∠CBD=
13
.則OM=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,銳角△ABC內(nèi)接于⊙O,弦AB=8,BD⊥AC于點D,OM⊥AB于點M,則sin∠CBD的值等于( 。
A、0.6B、0.8C、0.5D、1.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•新疆)如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點,∠ABC=30°,且AB=AC.
(1)求證:AB為⊙O的切線;
(2)求弦AC的長;
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,兩弦AB、CD相交于AB中點E,且AB=8,CE:ED=4:9,則圓心到弦CD的距離為(  )
A、
2
14
3
B、
28
9
C、
2
7
3
D、
80
9

查看答案和解析>>

同步練習(xí)冊答案