【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)C的坐標(biāo)為(4,0),一次函數(shù) 的圖像分別交x軸、y軸于點(diǎn)A、點(diǎn)B.
(1)若點(diǎn)D是直線AB在第一象限內(nèi)的點(diǎn),且BD=BC,試求出點(diǎn)D的坐標(biāo).
(2)在⑴的條件下,若點(diǎn)Q是坐標(biāo)軸上的一個(gè)動(dòng)點(diǎn),試探索在第一象限是否存在另一個(gè)點(diǎn)P,使得以B、D、P、Q為頂點(diǎn)的四邊形是菱形(BD為菱形的一邊)?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】
(1)解:如圖1,設(shè)點(diǎn)D(3a,4a+3),
過點(diǎn)D作DE⊥y軸于E,把x=0代入y= x+3中,得,y=3,
∴OB=3,
∴BE=OE-OB=4a+3-3=4a,BC= =5,
在Rt△BED中,根據(jù)勾股定理得,(3a)2+(4a)2=52 ,
∴a=±1,
∵點(diǎn)D在第一象限,
∴a=1,
∴D(3,7)
(2)解:由(1)知,BD=BC=5,
①當(dāng)點(diǎn)Q在y軸上時(shí),
設(shè)Q(0,q),
∵使得以B,D,P,Q為頂點(diǎn)的四邊形是菱形(BD為菱形的一邊),且點(diǎn)P在第一象限內(nèi),
即:四邊形BDPQ是菱形,
∴PQ∥BD,DP∥BQ,
∴點(diǎn)P的橫坐標(biāo)為3,
∵四邊形BDPQ是菱形,
∴BQ=BD=5,
∵B(0,3),
∴Q(0,8)或(0,-2),
Ⅰ、當(dāng)點(diǎn)Q(0,8)時(shí),
∵直線BD的解析式為y= x+3,
∴直線PQ的解析式為y= x+8,
當(dāng)x=3時(shí),y=12,
∴P(3,12),
Ⅱ、點(diǎn)Q(0,-2)時(shí),
∵直線BD的解析式為y= x+3,
∴直線PQ的解析式為y= x-2,
當(dāng)x=3時(shí),y=2,
∴P(3,2),
②當(dāng)點(diǎn)Q在x軸上時(shí),
設(shè)Q(m,0),),
∵使得以B,D,P,Q為頂點(diǎn)的四邊形是菱形(BD為菱形的一邊),且點(diǎn)P在第一象限內(nèi),
即:四邊形BDPQ是菱形,
∴BQ=BD=5,
∵OB=3,
∴OQ=4,
∴Q(-4,0)或(4,0)
Ⅰ、當(dāng)Q(-4,0)時(shí),∵一次函數(shù)y= x+3的圖象交x軸于點(diǎn)A,
∴A(- ,0),
∴點(diǎn)Q在點(diǎn)A的左側(cè),
∴點(diǎn)P在第二象限內(nèi),不符合題意,舍去,
Ⅱ、當(dāng)點(diǎn)Q(4,0)時(shí),∵四邊形BDPQ是菱形,
∴BQ∥DP,PQ∥BD,
∵直線BD的解析式為y= x+3,
∴設(shè)直線PQ的解析式為y= x+b,
∴ ×4+b=0,
∴b=- ,
∴直線PQ的解析式為y= x- ①,
∵B(0,3),Q(4,0),
∴直線BQ的解析式為y=- x+3,
∵D(3,7),
∴直線DP的解析式為y=- x+ ②,
聯(lián)立①②解得,x=7,y=4,
∴P(7,4),
即:滿足條件的點(diǎn)P的坐標(biāo)為(3,12)、(3,2)、(7,4).
【解析】(1)過點(diǎn)D作DE⊥y軸于E,先求出直線AB與y軸的交點(diǎn)坐標(biāo),再根據(jù)勾股定理求出BC的長,然后在Rt△BED中用勾股定理建立方程求出a的值,就可求得點(diǎn)D的坐標(biāo)。
(2)分兩種情況討論:①當(dāng)點(diǎn)Q在y軸上時(shí),利用菱形的性質(zhì)求出BQ=5,再求出點(diǎn)Q的坐標(biāo)為(0,8)或(0,-2),然后利用菱形的性質(zhì)求出當(dāng)點(diǎn)Q為(0,8)和(0,-2)時(shí)的點(diǎn)P的坐標(biāo);②當(dāng)點(diǎn)Q在x軸上時(shí),先求出點(diǎn)Q的坐標(biāo)為(-4,0)或(4,0),然后利用菱形的性質(zhì)分別求出點(diǎn)Q的坐標(biāo)為(-4,0)和(4,0)時(shí)的點(diǎn)P的坐標(biāo)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足下列兩個(gè)條件: ①x>0時(shí),y隨x的增大而增大;
②它的圖象經(jīng)過點(diǎn)(1,2).
請(qǐng)寫出一個(gè)符合上述條件的函數(shù)的表達(dá)式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,點(diǎn)D是AB的中點(diǎn),分別過點(diǎn)D作DE⊥AC,DF⊥BC,垂足分別為點(diǎn)E、F.求證:四邊形CEDF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是一組二次函數(shù)y=x2+3x﹣5的自變量x與函數(shù)值y的對(duì)應(yīng)值:
x | 1 | 1.1 | 1.2 | 1.3 | 1.4 |
y | ﹣1 | ﹣0.49 | 0.04 | 0.59 | 1.16 |
那么方程x2+3x﹣5=0的一個(gè)近似根是( )
A.1
B.1.1
C.1.2
D.1.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在一條筆直的公路上有M、P、N三個(gè)地點(diǎn),M、P兩地相距20km,甲開汽車,乙騎自行車分別從M、P兩地同時(shí)出發(fā),勻速前往N地,到達(dá)N地后停止運(yùn)動(dòng).已知乙騎自行車的速度為20km/h,甲,乙兩人之間的距離y(km)與乙行駛的時(shí)間t(h)之間的關(guān)系如圖②所示.
(1)M、N兩地之間的距離為 km;
(2)求線段BC所表示的y與t之間的函數(shù)表達(dá)式;
(3)若乙到達(dá)N地后,甲,乙立即以各自原速度返回M地,請(qǐng)?jiān)趫D②所給的直角坐標(biāo)系中補(bǔ)全函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解本校學(xué)生采用何種方式上網(wǎng)查找所需要的學(xué)習(xí)資源,隨機(jī)抽取部分學(xué)生了解情況,并將統(tǒng)計(jì)結(jié)果繪制成頻數(shù)分布表及頻數(shù)分布直方圖.
上網(wǎng)查找學(xué)習(xí)資源方式頻數(shù)分布表
查找方式 | 頻數(shù) | 頻率 |
搜索引擎 | 16 | 32% |
專題網(wǎng)站 | 15 | a |
在線網(wǎng)校 | 4 | 8% |
試題題庫 | 10 | 20% |
其他 | b | 10% |
(1)頻數(shù)分布表中a,b的值:a= ;b= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若全校有1000名學(xué)生,估計(jì)該校利用搜索引擎上網(wǎng)查找學(xué)習(xí)資源的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:用2輛A型車和1輛B型車裝滿貨物一次可運(yùn)貨10噸;用1輛A型車和2輛B型車裝滿貨物一次可運(yùn)貨11噸.某物流公司現(xiàn)有31噸貨物,計(jì)劃同時(shí)租用A型車輛,B型車輛,一次運(yùn)完,且恰好每輛車都裝滿貨物. 根據(jù)以上信息,解答下列問題:
(1)1輛A型車和1輛B型車都裝滿貨物一次可分別運(yùn)貨多少噸?
(2)請(qǐng)你幫該物流公司設(shè)計(jì)租車方案.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com