【題目】綜合題:求下列事件概率
(1)小楊和小姜住在同一個小區(qū),該小區(qū)到蘇果超市有A、B、C三條路線.
①求小楊隨機選擇一條路線,恰好是A路線的概率;
②求小楊和小姜兩人分別隨機選擇一條路線去蘇果超市,恰好兩人選擇同一條路線的概率.
(2)有4位顧客在超市中選購4種品牌的方便面.如果每位顧客從4種品牌中隨機的選購一種,那么4位顧客選購同一品牌的概率是 , 至少有2位顧客選擇的不是同一品牌的概率是(直接填字母序號)
A. B.( 3 C.1﹣( 3 D.1﹣( 3

【答案】
(1)解:①小楊隨機選擇一條路線,恰好是A路線的概率= ;

②畫樹狀圖:

共有9種等可能的結果數(shù),其中兩人選擇同一條路線的結果數(shù)為3,

所以兩人選擇同一條路線的概率= =


(2)B,D
【解析】解:(2)有4位顧客在超市中選購4種品牌的方便面.如果每位顧客從4種品牌中隨機的選購一種,那么4位顧客選購同一品牌的概率是( 3,至少有2位顧客選擇的不是同一品牌的概率是1﹣( 2

所以答案是B、D.

【考點精析】解答此題的關鍵在于理解列表法與樹狀圖法的相關知識,掌握當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率,以及對概率公式的理解,了解一般地,如果在一次試驗中,有n種可能的結果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率為P(A)=m/n.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我們已經知道,有一個內角是直角的三角形是直角三角形.其中直角所在的兩條邊叫直角邊,直角所對的邊叫斜邊(如圖①所示).數(shù)學家已發(fā)現(xiàn)在一個直角三角形中,兩個直角邊邊長的平方和等于斜邊長的平方.如果設直角三角形的兩條直角邊長度分別是,斜邊長度是,那么可以用數(shù)學語言表達:

(1)在圖②,,則 ;

(2)觀察圖,利用面積與代數(shù)恒等式的關系,試說明的正確性.其中兩個相同的直角三角形邊AE、EB在一條直線上;

(3)如圖所示,折疊長方形ABCD的一邊AD,使點D落在BC邊的點F處,已知AB=8,BC=10,利用上面的結論求EF的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形ABCD中,∠ADC=ABC=90°,AD=CDDPAB于點P,若四邊形ABCD的面積是36,求DP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,AD=7,其中點E為CD的中點.有一動點P,從點A按A→B→C→E的順序在矩形ABCD的邊上移動,移動到點E停止,在此過程中以點A,P,E三點為頂點的直角三角形的個數(shù)為( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解我校七年級名學生的體重情況,現(xiàn)從中隨機抽取名學生測量體重進行統(tǒng)計分析,關于本次調查下列說法正確的是( )

A.本次調查中的總體是七年級名學生

B.本次調查中的樣本是隨機抽取的名學生的體重

C.本次調查中的樣本容量是

D.本次調查中的個體是七年級的每個學生

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB6,點E在邊CD上,且CD3DE.將ADE沿AE對折至AFE,延長EF交邊BC于點G,連結AG、CF

1)求證:①ABGAFG; BGGC;

2)求FGC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點P(1,﹣4)、Q(m,n)在函數(shù)(x>0)的圖象上,當m>1時,過點P分別作x軸、y軸的垂線,垂足為點A,B;過點Q分別作x軸、y軸的垂線,垂足為點C、D.QD交PA于點E,隨著m的增大,四邊形ACQE的面積(

A.減小 B.增大 C.先減小后增大 D.先增大后減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請閱讀下列材料:

一般的,如果一個正數(shù)x的平方等于a,即x2=a,那么正數(shù)x就叫做a的算術平分根,記作(即),如3就叫做9的算術平方根.

1)計算下列各式的值:________,________,________

2)觀察(1)中的結果,,這三個數(shù)之間存在什么關系?________________________

3)由(2)得出的結論猜想:________,);

4)根據(3)計算:________,________,=________(寫最終結果)

查看答案和解析>>

同步練習冊答案