等腰三角形腰和底的比是3∶2,若底邊為6,則底邊上的高是________,腰上的高是________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

黃金分割比是生活中比較多見(jiàn)的一種長(zhǎng)度比值,它能給人許多美感和科學(xué)性,我們初中階段學(xué)過(guò)的許多幾何圖形也有著類似的邊長(zhǎng)比例關(guān)系.例如我們熟悉的頂角是36°的等腰三角形,其底與腰之比就為黃金分割比
5
-1
2
,底角平分線與腰的交點(diǎn)為黃金分割點(diǎn).
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點(diǎn)D,請(qǐng)你證明點(diǎn)D是腰AB的黃金分割點(diǎn);
(2)如圖2,在△ABC中,AB=AC,若
AB
BC
=
5
-1
2
,則請(qǐng)你求出∠A的度數(shù);
(3)如圖3,如果在Rt△ABC中,∠ACB=90°,CD為AB上的高,∠A、∠B、∠ACB的對(duì)邊分別為a,b,c.若點(diǎn)D是AB的黃金分割點(diǎn),那么該直角三角形的三邊a,b,c之間是什么數(shù)量關(guān)系?并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:022

等腰三角形的腰和底之比為1∶,則底角為_(kāi)________,頂角為_(kāi)________;

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年浙江省湖州市南潯區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

黃金分割比是生活中比較多見(jiàn)的一種長(zhǎng)度比值,它能給人許多美感和科學(xué)性,我們初中階段學(xué)過(guò)的許多幾何圖形也有著類似的邊長(zhǎng)比例關(guān)系.例如我們熟悉的頂角是36°的等腰三角形,其底與腰之比就為黃金分割比,底角平分線與腰的交點(diǎn)為黃金分割點(diǎn).
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點(diǎn)D,請(qǐng)你證明點(diǎn)D是腰AB的黃金分割點(diǎn);
(2)如圖2,在△ABC中,AB=AC,若,則請(qǐng)你求出∠A的度數(shù);
(3)如圖3,如果在Rt△ABC中,∠ACB=90°,CD為AB上的高,∠A、∠B、∠ACB的對(duì)邊分別為a,b,c.若點(diǎn)D是AB的黃金分割點(diǎn),那么該直角三角形的三邊a,b,c之間是什么數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年數(shù)學(xué)參賽試卷2010.3吳(解析版) 題型:解答題

(2012•南潯區(qū)一模)黃金分割比是生活中比較多見(jiàn)的一種長(zhǎng)度比值,它能給人許多美感和科學(xué)性,我們初中階段學(xué)過(guò)的許多幾何圖形也有著類似的邊長(zhǎng)比例關(guān)系.例如我們熟悉的頂角是36°的等腰三角形,其底與腰之比就為黃金分割比,底角平分線與腰的交點(diǎn)為黃金分割點(diǎn).
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點(diǎn)D,請(qǐng)你證明點(diǎn)D是腰AB的黃金分割點(diǎn);
(2)如圖2,在△ABC中,AB=AC,若,則請(qǐng)你求出∠A的度數(shù);
(3)如圖3,如果在Rt△ABC中,∠ACB=90°,CD為AB上的高,∠A、∠B、∠ACB的對(duì)邊分別為a,b,c.若點(diǎn)D是AB的黃金分割點(diǎn),那么該直角三角形的三邊a,b,c之間是什么數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案