【題目】將4個(gè)數(shù)a,b,c,d排成2行、2列,兩邊各加一條豎直線記成,定義=ad-bc,上述記號(hào)就叫做2階行列式.若=-20,求x的值.
【答案】x=.
【解析】根據(jù)題中的新定義將所求的方程化為普通方程,整理后即可求出方程的解,即為x的值.
解:先根據(jù)定義,將轉(zhuǎn)化為(6x+5)(6x-5)-(6x-1)2=-20,再進(jìn)行化簡(jiǎn).
去括號(hào),得36x2-25-(36x2-12x+1)=-20,
整理,得36x2-25-36x2+12x-1=-20.
移項(xiàng),合并同類項(xiàng),得12x=6.
系數(shù)化為1,得x=.
“點(diǎn)睛”此題考查了整式的混合運(yùn)算,屬于新定義的題型,涉及的知識(shí)有:完全平方公式,去括號(hào)、合并同類項(xiàng)法則,根據(jù)題意將所求的方程化為普通方程是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若m、n、a、b成比例線段,則下列各式正確的是( )
A. m∶n=a∶b B. m∶n=b∶a
C. a∶b=n∶m D. a∶m=n∶b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式中,去括號(hào)或添括號(hào)正確的是( )
A. a2﹣(2a﹣b+c)=a2﹣2a﹣b+c
B. ﹣2x﹣t﹣a+1=﹣(2x﹣t)+(a﹣1)
C. 3x﹣[5x﹣(2x﹣1)]=3x﹣5x﹣2x+1
D. a﹣3x+2y﹣1=a+(﹣3x+2y﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,平分,交于點(diǎn),平分,交于點(diǎn),與交于點(diǎn),連接,.
(1)求證:四邊形是菱形;
(2)若,,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合.將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長(zhǎng)線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP= ,CQ= 時(shí),P、Q兩點(diǎn)間的距離 (用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一次函數(shù)y=2x+2的圖象向下平移2個(gè)單位長(zhǎng)度,得到相應(yīng)的函數(shù)表達(dá)式為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)y=x2﹣3x+3﹣m的圖象經(jīng)過(guò)原點(diǎn),則m=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程(k-1)x2+2kx+2=0
(1)(4分)求證:無(wú)論k為何值,方程總有實(shí)數(shù)根。
(2)(5分)設(shè)x1,x2是方程(k-1)x2+2kx+2=0的兩個(gè)根,記S=++ x1+x2,S的值能為2嗎?若能,求出此時(shí)k的值。若不能,請(qǐng)說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com