如圖,某高速公路建設(shè)中需要確定隧道AB的長度.當(dāng)飛機(jī)在離地面高度CE=1500m時,測量人員從C處測得A、B兩點(diǎn)處的俯角分別為60°和45°.求隧道AB的長(≈1.732,結(jié)果保留整數(shù)).
根據(jù)題意,可知∠CBE=45°, ∠CAE=60°. 
在Rt△AEC中,tan∠CAE=,即tan60°= ,
∴  AE===500.  
在Rt△BEC中,tan∠CBE=,即tan45°= ,
∴  BE==1500.    
∴ AB= BE-AE=1500-500≈1500-866=634(m).
答:隧道AB的長約為634m. .
易得∠CAO=60°,∠CBO=45°,利用相應(yīng)的正切值可得AO,BO的長,相減即可得到AB的長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知矩形ABCD,AB=,BC=3,在BC上取兩點(diǎn)E、F(E在F左邊),以EF為邊作等邊三角形PEF,使頂點(diǎn)P在AD上,PE、PF分別交AC于點(diǎn)G、H.

(1)求△PEF的邊長;
(2)若△PEF的邊EF在線段BC上移動.試猜想:PH與BE有什么數(shù)量關(guān)系?并證明你猜想的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系xoy中,已知點(diǎn)P是反比例函數(shù)圖象上一個動點(diǎn),以P為圓心的圓始終與y軸相切,設(shè)切點(diǎn)為A.

(1)如圖1,⊙P運(yùn)動到與x軸相切,設(shè)切點(diǎn)為K,試判斷四邊形OKPA的形狀,并說明理由.
(2)如圖2,⊙P運(yùn)動到與x軸相交,設(shè)交點(diǎn)為B、C.當(dāng)四邊形ABCP是菱形時,求出點(diǎn)A、B、C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,CD切⊙于點(diǎn)D,連結(jié)OC,交⊙O于點(diǎn)B,過點(diǎn)B作弦AB⊥OD,點(diǎn)E為垂足,已知⊙O的半徑為10。Sin∠COD=。

求:①弦AB的長;
②陰影部分面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

 如圖,是放置在正方形網(wǎng)格中的一個角,點(diǎn)A,B,C都在格點(diǎn)上,則的值是   ▲    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計算:;      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:計算題

計算:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:計算題

計算:

查看答案和解析>>

同步練習(xí)冊答案