【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P, AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=8,求MN·MC的值.
【答案】(1)見解析;(2)見解析;(3)32
【解析】
(1)已知C在圓上,故只需證明OC與PC垂直即可;根據(jù)圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切線;
(2)AB是直徑;故只需證明BC與半徑相等即可;
(3)連接MA,MB,由圓周角定理可得∠ACM=∠BCM,進而可得△MBN∽△MCB,故BM2=MNMC;代入數(shù)據(jù)可得MNMC=BM2=8.
(1)證明:∵OA=OC,
∴∠A=∠ACO
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是⊙O的直徑
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°.
即OC⊥CP,
∵OC是⊙O的半徑.
∴PC是⊙O的切線.
(2)證明:∵AC=PC,
∴∠A=∠P,
∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,
∴BC=OC.
(3)解:連接MB,MA
∵點M是的中點,
∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
又∵∠BMN=∠CMB,
∴△MBN∽△MCB.
∴
∴
又∵AB是⊙O的直徑,
∴∴∠AMB=90°,AM=BM.
∵AB=8,
∴
∴
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級數(shù)學興趣小組的學生進行社會實踐活動時,想利用所學的解直角三角形的知識測量教學樓的高度,他們先在點D處用測角儀測得樓頂M的仰角為30°,再沿DF方向前行40米到達點E處,在點E處測得樓頂M的仰角為45°,已知測角儀的高AD為1.5米,請根據(jù)他們的測量數(shù)據(jù)求此樓MF的高(結(jié)果精確到0.1m,參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,AC是對角線,今有較大的直角三角板,一邊始終經(jīng)過點B,直角頂點P在射線AC上移動,另一邊交DC于點Q.
(1)如圖①,當點Q在DC邊上時,猜想并寫出PB與PQ所滿足的數(shù)量關(guān)系,并加以證明;
(2)如圖②,當點Q落在DC的延長線上時,猜想并寫出PB與PQ滿足的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結(jié)BD、DP,BD與CF相交于點H.給出下列結(jié)論,其中正確結(jié)論的個數(shù)是( )
①△BDE∽△DPE;②;③;④tan∠DBE=.
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為慶祝中華人民共和國成立70周年,深圳舉辦了燈光秀,某數(shù)學興趣小組為測量“平安金融中心”AB的高度,他們在地面C處測得另一幢大廈DE的頂部E處的仰角為32°,測得“平安中心”AB的頂部A處的仰角為44°.登上大廈DE的頂部E處后,測得“平安中心”AB的頂部A處的仰角為60°,(如圖).已知C、D、B三點在同一水平直線上,且CD=400米,求平安金融中心AB的高度.(參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,tan44°≈0.99,1.41,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(教材呈現(xiàn))下圖是華師版九年級上冊數(shù)學教材第78頁的部分內(nèi)容.
例1 求證:三角形的一條中位線與第三邊上的中線互相平分.
已知:如圖,在中,,,.
求證:、互相平分.
證明:連結(jié)、.
請根據(jù)教材提示,結(jié)合圖①,寫出完整的解題過程.
(結(jié)論應用)如圖②,連結(jié)圖①的、,分別與、、交于點、、.
(1)若,求點、之間的距離.
(2)若四邊形的面積為2,則的面積為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為(4,0)、(0,2),點C為線段AB上任意一點(不與點A、B重合).CD⊥OA于點D,點E在DC的延長線上,EF⊥y軸于點F,若點C為DE中點,則四邊形ODEF的周長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點E、F分別在邊AB、AC上,將△AEF沿直線EF折疊,使點A的對應點D恰好落在邊BC上.若△BDE是直角三角形,則CF的長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com