已知二次函數(shù).
(1)求拋物線頂點M的坐標(biāo);
(2)設(shè)拋物線與x軸交于A,B兩點,與y軸交于C點,求A,B,C的坐標(biāo)(點A在點B的左側(cè)),并畫出函數(shù)圖象的大致示意圖;
(3)根據(jù)圖象,求不等式的解集.
(1)(1,4);(2)A(-1,0),B(3,0),C(0,3),如下圖;(3)或
解析試題分析:(1)直接根據(jù)頂點坐標(biāo)公式(,)即可求得拋物線頂點M的坐標(biāo);
(2)分別把和代入二次函數(shù)即可求得點A,B,C的坐標(biāo),再結(jié)合(1)中求得的拋物線頂點M的坐標(biāo)即可得到函數(shù)圖象的大致示意圖;
(3)由可得,即找出圖象在x軸下方的部分對應(yīng)的x的值即可.
試題解析:(1)∵,
∴拋物線頂點M的坐標(biāo)為(1,4);
(2)在中,當(dāng)時,
當(dāng)時,,解得,
∴A(-1,0),B(3,0),C(0,3),函數(shù)簡圖如下圖
(3)由可得,所以不等式的解集為或.
考點:二次函數(shù)的性質(zhì)
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線(m是常數(shù),)與x軸有兩個不同的交點A、B,點A、點B關(guān)于直線x=1對稱,拋物線的頂點為C.
(1)此拋物線的解析式;
(2)求點A、B、C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在平面直角坐標(biāo)系中,Rt△OBC的兩條直角邊分別落在x軸、y軸上,且OB=1,OC=3,將△OBC繞原點O順時針旋轉(zhuǎn)90°得到△OAE,將△OBC沿y軸翻折得到△ODC,AE與CD交于點F.
(1)若拋物線過點A、B、C, 求此拋物線的解析式;
(2)求△OAE與△ODC重疊的部分四邊形ODFE的面積;
(3)點M是第三象限內(nèi)拋物線上的一動點,點M在何處時△AMC的面積最大?最大面積是多少?求出此時點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖,在平面直角坐標(biāo)系中,拋物線過點A(6,0)和點B(3,).
(1)求拋物線的解析式;
(2)將拋物線沿x軸翻折得拋物線,求拋物線的解析式;
(3)在(2)的條件下,拋物線上是否存在點M,使與相似?如果存在,求出點M的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知△OAB的頂點A(﹣6,0),B(0,2),O是坐標(biāo)原點,將△OAB繞點O按順時針旋轉(zhuǎn)90°,得到△ODC.
(1)寫出C,D兩點的坐標(biāo);
(2)求過A,D,C三點的拋物線的解析式,并求此拋物線頂點E的坐標(biāo);
(3)證明AB⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,用長為20米的籬笆恰好圍成一個扇形花壇,且扇形花壇的圓心角小于180°,設(shè)扇形花壇的半徑為米,面積為平方米.(注:的近似值取3)
(1)求出與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)當(dāng)半徑為何值時,扇形花壇的面積最大,并求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知:為邊長是的等邊三角形,四邊形為邊長是6的正方形. 現(xiàn)將等邊和正方形按如圖①的方式擺放,使點與點重合,點、、在同一條直線上,從圖①的位置出發(fā),以每秒1個單位長度的速度沿方向向右勻速運動,當(dāng)點與點重合時暫停運動,設(shè)的運動時間為秒().
(1)在整個運動過程中,設(shè)等邊和正方形重疊部分的面積為,請直接寫出與之間的函數(shù)關(guān)系式;
(2)如圖②,當(dāng)點與點重合時,作的角平分線交于點,將繞點逆時針旋轉(zhuǎn),使邊與邊重合,得到. 在線段上是否存在點,使得為等腰三角形. 如果存在,求線段的長度;若不存在,請說明理由.
(3)如圖③,若四邊形為邊長是的正方形,的移動速度為每秒 個單位長度,其余條件保持不變. 開始移動的同時,點從點開始,沿折線以每秒個單位長度開始移動,停止運動時,點也停止運動. 設(shè)在運動過程中,交折線于點,則當(dāng)時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
銳角△ABC中,BC=6,,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設(shè)其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0).
(1)求△ABC中邊BC上高AD;
(2)當(dāng)x為何值時,PQ恰好落在邊BC上(如圖1);
(3)當(dāng)PQ在△ABC外部時(如圖2),求y關(guān)于x的函數(shù)關(guān)系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C(0,4),頂點為(1,).
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖1,設(shè)拋物線的對稱軸與x軸交于點D,試在對稱軸上找出點P,使△CDP為等腰三角形,請直接寫出滿足條件的所有點P的坐標(biāo).
(3)如圖2,若點E是線段AB上的一個動點(與A、B不重合),分別連接AC、BC,過點E作EF∥AC交線段BC于點F,連接CE,記△CEF的面積為S,S是否存在最大值?若存在,求出S的最大值及此時E點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com