【題目】已知:在平面直角坐標(biāo)系中,點為坐標(biāo)原點,的頂點的坐標(biāo)為,頂點在軸上(點在點的右側(cè)),點在上,連接,且.
(1)如圖1,求點的縱坐標(biāo);
(2)如圖2,點在軸上(點在點的左側(cè)),點在上,連接交于點;若,求證:
(3)如圖3,在(2)的條件下,是的角平分線,點與點關(guān)于軸對稱,過點作分別交于點,若,求點的坐標(biāo).
【答案】(1)點的縱坐標(biāo)為 2;(2)證明見解析;(3)點的坐標(biāo)為.
【解析】
(1)由得出,然后通過等量代換得出,則有,進而有,則點C的縱坐標(biāo)可求;
(2)通過推導(dǎo)出,然后求出,則利用含30°的直角三角形的性質(zhì)即可證明結(jié)論;
(3)連接,過點 作交 軸于點,先推出 ,然后通過垂直和角度之間的代換得出 則有 ,然后進一步,再因為 得出的值,則可求出 ,利用即可求出的值,則點E的坐標(biāo)可求.
(1)如圖 ,過點作于點
又
∴點的縱坐標(biāo)為 2.
(2)
又
(3)如圖 ,連接,過點作交軸于點
又
∵
∵點與點關(guān)于軸對稱,點在軸上
∵點在軸上,且在點 的上方.
∴點的坐標(biāo)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,經(jīng)過點C的⊙O與斜邊AB相切于點P.
(1)如圖①,當(dāng)點O在AC上時,試說明2∠ACP=∠B;
(2)如圖②,AC=8,BC=6,當(dāng)點O在△ABC外部時,求CP長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸的交點分別為A、B,與y軸的負半軸交于點C.已知拋物線的頂點坐標(biāo)為(1,﹣4),點B的坐標(biāo)(3,0).
(1)求該拋物線的解析式.
(2)在該函數(shù)圖象上能否找到一點P,使PO=PC?若能,請求出點P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+2nx﹣n2+n的頂點為P,直線y=分別交x,y軸于點M,N.
(1)若點P在直線MN上,求n的值;
(2)是否存在過(0,﹣2)的直線與拋物線交于A,B兩點(A點在B點的下方),使AB為定長,若存在,求出AB的長;若不存在,請說明理由;
(3)在(2)的條件下,當(dāng)四邊形MABN的周長最小時,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】盒中有若干枚黑棋和白棋,這些棋除顏色外無其他差別,現(xiàn)讓學(xué)生進行摸棋試驗:每次摸出一枚棋,記錄顏色后放回搖勻.重復(fù)進行這樣的試驗得到以下數(shù)據(jù):
摸棋的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 |
摸到黑棋的次數(shù)m | 24 | 51 | 76 | 124 | 201 | 250 |
摸到黑棋的頻率(精確到0.001) | 0.240 | 0.255 | 0.253 | 0.248 | 0.251 | 0.250 |
(1)根據(jù)表中數(shù)據(jù)估計從盒中摸出一枚棋是黑棋的概率是 ;(精確到0.01)
(2)若盒中黑棋與白棋共有4枚,某同學(xué)一次摸出兩枚棋,請計算這兩枚棋顏色不同的概率,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校初二年級在元旦匯演中需要外出租用同一種服裝若干件,已知在沒有任何優(yōu)惠的情況下,同時在甲服裝店租用2件和乙服裝店租用3件共需280元,在甲服裝店租用4件和乙服裝店租用一件共需260元.
(1)求兩個服裝店提供的單價分別是多少?
(2)若該種服裝提前一周訂貨則甲乙兩個租售店都可以給予優(yōu)惠,具體辦法如下:甲服裝店按原價的八折進行優(yōu)惠;在乙服裝店如果租用5件以上,則超出5件的部分可按原價的六折進行優(yōu)惠;設(shè)需要租用()件服裝,選擇甲店則需要元,選擇乙店則需要元,請分別求出,關(guān)于的函數(shù)關(guān)系式;
(3)若租用的服裝在5件以上,請問租用多少件時甲乙兩店的租金相同?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊上的動點,且AE=BF=CG=DH.
(1)求證:△AEH≌△CGF;
(2)在點E、F、G、H運動過程中,判斷直線EG是否經(jīng)過某一個定點,如果是,請證明你的結(jié)論;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點△ABC(即三角形的頂點都在格點上)
(1)△ABC的面積為 ;
(2)在圖中作出△ABC關(guān)于直線MN的對稱圖形△A'B'C';
(3)在MN上找一點P,使得PB+PC的距離最短,這個最短距離為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com