【題目】如圖所示,在△ABC中,AD是BC邊上的中線.
(1)畫出與△ACD關(guān)于點D成中心對稱的三角形;
(2)找出與AC相等的線段;
(3)探究:△ABC中AB與AC的和與中線AD之間有何大小關(guān)系?并說明理由;
(4)若AB=5,AC=3,求線段AD的取值范圍.
【答案】(1)△A′BD即為所求(2)A′B=AC(3)AB+AC>2AD(4)1<AD<4.
【解析】【試題分析】
(1)根據(jù)成中心對稱的定義,延長AD到A’,使A’D=AD,點C與點B關(guān)于點D對稱,連接A’B即可,△A′BD即為所求;
(2)根據(jù)成中心對稱的兩個圖形 對應(yīng)邊相等,得A′B=AC;
(3)由(2)得:AB+AC=AB+A′B,根據(jù)三角形兩邊之和大于第三邊,得AB+A′B >AA’=2AD,即AB+AC>2AD;
(4)由(3)得,根據(jù)三角形兩邊之和大于第三邊,兩邊之差小于第三邊,得5-3<AA’=2AD<5+3,即2<2AD<8,所以1<AD<4.
【試題解析】
(1)如圖所示,△A′BD即為所求;
(2)A′B=AC;
(3)AB+AC>2AD,理由:由于△A′BD與△ACD關(guān)于點D成中心對稱,所以AD=A′D,AC=A′B,在△ABA′中,有AB+A′B>AA′,即AB+AC>AD+A′D,因此AB+AC>2AD;
(4)由(3)可得,在△ABA′中,有AB-A′B<AA′<AB+A′B,即AB-AC<2AD<AB+AC,因此有2<2AD<8,所以1<AD<4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=12厘米,(即∠B=∠C),BC=9厘米,點M為AB的中點,
(1)如果點P在線段BC上以2厘米/秒的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1.5秒后,△BPM與△CQP是否全等?請說明理由.
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPM與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依此類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)如圖,已知直線和雙曲線 (k>0),點A(m,n)在雙曲線 上.當m=n=2時.
(1)直接寫出k的值;
(2)將直線作怎樣的平移能使平移后的直線與雙曲線 只有一個交點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心.(下列各題結(jié)果精確到0.1m)
(1)求地基的中心到邊緣的距離;
(2)己知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)拋物線經(jīng)過點A (4,0),點B (1,-3) ,求該拋物線的解析式;
(2)如圖,要修建一個圓形噴水池,在池中心豎直安裝一根水管,在水管的頂端安一個噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達到最高,高度為3m,水柱落地處離池中心3m,水管應(yīng)多長?
(3)如圖,點P(>0),在軸正半軸上,過點P作平行于軸的直線,分別交拋物線于點A,B,交拋物線于點C,D,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=-x-2交x軸于點A,交y軸于點B,拋物線y2=ax2+bx+c的頂點為A,且經(jīng)過點B.
(1)求該拋物線的解析式;
(2)求當y1≥y2時x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于點M,連接CM.
(1)求證:BE=AD;
(2)用含α的式子表示∠AMB的度數(shù);
(3)當α=90°時,取AD,BE的中點分別為點P,Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com