【題目】已知,我們把任意形如:的五位自然數(shù)(其中,,)稱之為喜馬拉雅數(shù),例如:在自然數(shù)中,,所以就是一個(gè)喜馬拉雅數(shù).并規(guī)定:能被自然數(shù)整除的最大的喜馬拉雅數(shù)記為,能被自然數(shù)整除的最小的喜馬拉雅數(shù)記為.
(1)求證:任意一個(gè)喜馬拉雅數(shù)都能被3整除;
(2)求的值.
【答案】(1)答案見解析;(2)112221.
【解析】分析:(1)根據(jù)喜馬拉雅數(shù)的定義求出各個(gè)數(shù)位上的數(shù)字之和;(2)根據(jù)能被自然數(shù)8整除的最小的喜馬拉雅數(shù)記為的整除的特征,與各數(shù)位上的數(shù)字的特點(diǎn)求得I(8).
詳解:(1)各數(shù)位數(shù)字之和為:
a+b+c+b+a=2a+2b+c=2a+2b+(a+b)=3(a+b).
∵a,b是整數(shù),
∴a+b是整數(shù).
∴任意一個(gè)喜馬拉雅數(shù)都能被3整除
(2)根據(jù)題意得:F(3)=90909.
I(8)==1263a+139b-,
∵喜馬拉雅數(shù)能被8整除,
∴3a+2b能被8整除.
∵,,,
∴.
∴3a+2b=8或16或24.
則I(8)=21312.
∴F(3)+I(8)=90909+21312=112221.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O為ABC的外接圓,D為OC與AB的交點(diǎn),E為線段OC延長線上一點(diǎn),且EACABC.
(1)求證:直線AE是⊙O的切線;
(2)若D為AB的中點(diǎn),CD3,AB8.
①求⊙O的半徑;②求ABC的內(nèi)心I到點(diǎn)O的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,BE∥AC,AE∥BD,OE與AB交于點(diǎn)F.
(1)試判斷四邊形AEBO的形狀,并說明理由;
(2)若OE=10,AC=16,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三邊長分別為a,b,c,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=5:12:13,其中能判斷△ABC是直角三角形的個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年水果大豐收,A,B兩個(gè)水果基地分別收獲水果380件、320件,現(xiàn)需把這些水果全部運(yùn)往甲、乙兩銷售點(diǎn),從A基地運(yùn)往甲、乙兩銷售點(diǎn)的費(fèi)用分別為每件40元和20元,從B基地運(yùn)往甲、乙兩銷售點(diǎn)的費(fèi)用分別為每件15元和30元,現(xiàn)甲銷售點(diǎn)需要水果400件,乙銷售點(diǎn)需要水果300件.
(1)設(shè)從A基地運(yùn)往甲銷售點(diǎn)水果x件,總運(yùn)費(fèi)為W元,請(qǐng)用含x的代數(shù)式表示W,并寫出x的取值范圍;
(2)若總運(yùn)費(fèi)不超過18300元,且A地運(yùn)往甲銷售點(diǎn)的水果不低于200件,試確定運(yùn)費(fèi)最低的運(yùn)輸方案,并求出最低運(yùn)費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是邊長為的正方形ABCD的對(duì)角線BD上的動(dòng)點(diǎn),過點(diǎn)P分別作PE⊥BC于點(diǎn)E,PF⊥DC于點(diǎn)F,連接AP并延長,交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EF交AH于點(diǎn)G,當(dāng)點(diǎn)P在BD上運(yùn)動(dòng)時(shí)(不包括B、D兩點(diǎn)),以下結(jié)論中:①MF=MC;②AH⊥EF;③AP2=PMPH;④EF的最小值是.其中正確結(jié)論是( 。
A. ①③ B. ②③ C. ②③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某花園護(hù)欄是用直徑為80厘米的半圓形條鋼組制而成,且每增加一個(gè)半圓形條鋼,護(hù)欄長度就增加a厘米(a>0).設(shè)半圓形條鋼的總個(gè)數(shù)為x(x為正整數(shù)),護(hù)欄總長度為y厘米.
(1)當(dāng)a=50,x=2時(shí),護(hù)欄總長度y為 厘米;
(2)當(dāng)a=60時(shí),用含x的代數(shù)式表示護(hù)欄總長度y(結(jié)果要化簡);
(3)在(2)的條件下,若要使護(hù)欄總長度為50x+430,請(qǐng)求出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李的住房結(jié)構(gòu)如圖所示。(單位:米)
(1)小李打算把臥室和客廳鋪上木地板,請(qǐng)你幫他算一算,他至少需要買多少平方米的木地板?
(2)當(dāng)x=6,y=3時(shí),小李住房的總面積是多少平方米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com