如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm,點E、F、G分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關(guān)于直線EF的對稱圖形是△EB′F.設(shè)點E、F、G運動的時間為t(單位:s).
(1)當t=______s時,四邊形EBFB′為正方形;
(2)若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數(shù)t,使得點B′與點O重合?若存在,求出t的值;若不存在,請說明理由.

【答案】分析:(1)利用正方形的性質(zhì),得到BE=BF,列一元一次方程求解即可;
(2)△EBF與△FCG相似,分兩種情況,需要分類討論,逐一分析計算;
(3)本問為存在型問題.假設(shè)存在,則可以分別求出在不同條件下的t值,它們互相矛盾,所以不存在.
解答:解:(1)若四邊形EBFB′為正方形,則BE=BF,
即:10-t=3t,
解得t=2.5;

(2)分兩種情況,討論如下:
①若△EBF∽△FCG,
則有,即,
解得:t=2.8;
②若△EBF∽△GCF,
則有,即,
解得:t=-14-2(不合題意,舍去)或t=-14+2
∴當t=2.8s或t=(-14+2)s時,以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似.

(3)假設(shè)存在實數(shù)t,使得點B′與點O重合.
如圖,過點O作OM⊥BC于點M,則在Rt△OFM中,OF=BF=3t,F(xiàn)M=BC-BF=6-3t,OM=5,
由勾股定理得:OM2+FM2=OF2,
即:52+(6-3t)2=(3t)2
解得:t=

過點O作ON⊥AB于點N,則在Rt△OEN中,OE=BE=10-t,EN=BE-BN=10-t-5=5-t,ON=6,
由勾股定理得:ON2+EN2=OE2,
即:62+(5-t)2=(10-t)2
解得:t=3.9.
≠3.9,
∴不存在實數(shù)t,使得點B′與點O重合.
點評:本題為運動型綜合題,考查了矩形性質(zhì)、軸對稱、相似三角形的判定性質(zhì)、勾股定理、解方程等知識點.題目并不復(fù)雜,但需要仔細分析題意,認真作答.第(2)問中,需要分類討論,避免漏解;第(3)問是存在型問題,可以先假設(shè)存在,然后通過推導(dǎo)出互相矛盾的結(jié)論,從而判定不存在.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點E為矩形ABCD的邊AD上一點,BE=BC,EF平分∠AEB交AB于點F,連FC.
(1)求證:EF⊥EC;
(2)
AB
BC
=
EC
FC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘇州)如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm,點E、F、G分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關(guān)于直線EF的對稱圖形是△EB′F.設(shè)點E、F、G運動的時間為t(單位:s).
(1)當t=
2.5
2.5
s時,四邊形EBFB′為正方形;
(2)若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數(shù)t,使得點B′與點O重合?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014年中考數(shù)學(xué)二輪精品復(fù)習動點型問題練習卷(解析版) 題型:解答題

如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm,點E、FG分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,EBF關(guān)于直線EF的對稱圖形是EB′F.設(shè)點E、F、G運動的時間為t(單位:s).


1)當t= ????????? s時,四邊形EBFB′為正方形;
2)若以點E、BF為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
3)是否存在實數(shù)t,使得點B′與點O重合?若存在,求出t的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(江蘇蘇州卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm.點E,F(xiàn),G分別從A,B,C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s.當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關(guān)于直線EF的對稱圖形是△EB'F,設(shè)點E,F(xiàn),G運動的時間為t(單位:s).

(1)當t=     s時,四邊形EBFB'為正方形;

(2)若以點E,B,F(xiàn)為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;

(3)是否存在實數(shù)t,使得點B'與點O重合?若存在,求出t的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省武漢市中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

如圖,點E為矩形ABCD的邊AD上一點,BE=BC,EF平分∠AEB交AB于點F,連FC.
(1)求證:EF⊥EC;
(2)

查看答案和解析>>

同步練習冊答案