【題目】下列尺規(guī)作圖中,能確定圓心的是( 。
①如圖1,在圓上任取三個點(diǎn)A,B,C,分別作弦AB,BC的垂直平分線,交點(diǎn)O即為圓心
②如圖2,在圓上任取一點(diǎn)B,以B為圓心,小于直徑長為半徑畫弧交圓于A,C兩點(diǎn)連結(jié)AB,BC,作∠ABC的平分線交圓于點(diǎn)D,作弦BD的垂直平分線交BD于點(diǎn)O,點(diǎn)O即為圓心
③如圖3,在圓上截取弦AB=CD,連結(jié)AB,BC,CD,分別作∠ABC與∠DCB的平分線,交點(diǎn)O即為圓心
A. ①②B. ①③C. ②④D. ①②③
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB,AD是⊙O的弦,AO平分.過點(diǎn)B作⊙O的切線交AO的延長線于點(diǎn)C,連接CD,BO.延長BO交⊙O于點(diǎn)E,交AD于點(diǎn)F,連接AE,DE.
(1)求證:是⊙O的切線;
(2)若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+1的圖象交x軸于A(﹣2,0),B(1,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D是第四象限內(nèi)拋物線上的一個動點(diǎn),過點(diǎn)D作DE∥y軸交x軸于點(diǎn)E,線段CB的延長線交DE于點(diǎn)M,連接OM,BD交于點(diǎn)N.
(1)求二次函數(shù)的表達(dá)式;
(2)當(dāng)S△OEM=S△DBE時,求點(diǎn)D的坐標(biāo)及sin∠DAE的值;
(3)在(2)的條件下,點(diǎn)P是x軸上一個動點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩張完全重合的矩形紙片,小亮同學(xué)將其中一張繞點(diǎn)A順時針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.請回答下列問題:(1)試探究線段BD與線段MF的關(guān)系,并簡要說明理由;
(2)小紅同學(xué)用剪刀將△BCD與△MEF剪去,與小亮同學(xué)繼續(xù)探究.他們將△ABD繞點(diǎn)A順時針旋轉(zhuǎn)得△AB1D1,AD1交FM于點(diǎn)K(如圖2),設(shè)旋轉(zhuǎn)角為β(0°<β<90°),當(dāng)△AFK為等腰三角形時,請直接寫出旋轉(zhuǎn)角β的度數(shù);
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點(diǎn)P,A2M2與BD交于點(diǎn)N,當(dāng)NP∥AB時,求平移的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O,頂點(diǎn)A(1,﹣1),且與直線y=kx+2相交于B(2,0)和C兩點(diǎn)
(1)求拋物線和直線BC的解析式;
(2)求證:△ABC是直角三角形;
(3)拋物線上存在點(diǎn)E(點(diǎn)E不與點(diǎn)A重合),使∠BCE=∠ACB,求出點(diǎn)E的坐標(biāo);
(4)在拋物線的對稱軸上是否存在點(diǎn)F,使△BDF是等腰三角形?若存在,請直接寫出點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)圖象的頂點(diǎn)為(﹣1,1),且與反比例函數(shù)的圖象交于點(diǎn)A(﹣3,﹣3)
(1)求二次函數(shù)與反比例函數(shù)的解析式;
(2)判斷原點(diǎn)(0,0)是否在二次函數(shù)的圖象上,并說明理由;
(3)根據(jù)圖象直接寫出二次函數(shù)的值小于反比例函數(shù)的值時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,且AB=10,弦MN的長為8,若弦MN的兩端在圓周上滑動,始終與AB相交.記點(diǎn)A,B到MN的距離分別為h1,h2,則|h1﹣h2|等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,過點(diǎn)C作直線CF∥AD.
(問題)如圖①,過點(diǎn)D作直線DG∥AB交直線CF于點(diǎn)E,連結(jié)AE,求證:AB=DE.
(探究)如圖②,在線段AD上任取一點(diǎn)P,過點(diǎn)P作直線PG∥AB交直線CF于點(diǎn)E,連結(jié)AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.
(應(yīng)用)在探究的條件下,設(shè)PE交AC于點(diǎn)M.若點(diǎn)P是AD的中點(diǎn),且△APM的面積為1,直接寫出四邊形ABPE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(﹣3,0),B(﹣1,0)兩點(diǎn),拋物線的頂點(diǎn)為M,直線y=﹣4x+9與y軸交于點(diǎn)C,與直線OM交于點(diǎn)D.
(1)求拋物線的解析式;
(2)過Q(0,3)作不平行于x軸的直線l
①如圖2,將拋物線平移,當(dāng)頂點(diǎn)至原點(diǎn)時,直線l交拋物線于點(diǎn)E、F,在y軸上存在一點(diǎn)P,使△PEF的內(nèi)心在y軸上,求點(diǎn)P的坐標(biāo);
②直線l交△CMD的邊CM、CD于點(diǎn)G、H(G點(diǎn)不與M點(diǎn)重合、H點(diǎn)不與D點(diǎn)重合).S四邊形MDHG,S△CGH分別表示四邊形MDHG和△CGH的面積,試探究的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com