【題目】如圖,△ABC中,∠A=30°,點(diǎn)O是邊AB上一點(diǎn),以點(diǎn)O為圓心,以OB為半徑作圓,⊙O恰好與AC相切于點(diǎn)D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長(zhǎng)是( 。
A. 2 B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)校園內(nèi)有一塊長(zhǎng)為(3a+b)米,寬為(2a+b)米的長(zhǎng)方形地塊,學(xué)校計(jì)劃在中間留一塊邊長(zhǎng)為(a+b)米的正方形地塊修建一座雕像,然后將陰影部分進(jìn)行綠化.
(1)求綠化的面積.(用含a、b的代數(shù)式表示)
(2)當(dāng)a=2,b=4時(shí),求綠化的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解題:
定義:如果一個(gè)數(shù)的平方等于-1,記為=-1,這個(gè)數(shù)i叫做虛數(shù)單位,把形如a+bi (a,b為實(shí)數(shù))的數(shù)叫做復(fù)數(shù),其中a叫這個(gè)復(fù)數(shù)的實(shí)部,b叫做這個(gè)復(fù)數(shù)的虛部.它的加,減,乘法運(yùn)算與整式的加,減,乘法運(yùn)算類似.例如,計(jì)算:
(1-i )+(2+3i )=(1+2)+(-1+3)i=3+2i;
(1+i )×(3-i )=1×3-i+3×i-=3+(-1+3)i+1=4+2i;
根據(jù)以上信息,完成下列問題:
(1)填空:=_______,=________;=________;
(2)計(jì)算:(2+i )×(1-3i );
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC是路邊坡角為30°,長(zhǎng)為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DA和DB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°和60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CM∥AN).
(1)求燈桿CD的高度;
(2)求AB的長(zhǎng)度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)如圖,平行四邊形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)F,連接CE,DF.
(1)求證:四邊形CEDF是平行四邊形;
(2)①當(dāng)AE= cm時(shí),四邊形CEDF是矩形;
②當(dāng)AE= cm時(shí),四邊形CEDF是菱形;(直接寫出答案,不需要說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜邊AB上的中線,將△BCD沿直線CD翻折至△ECD的位置,連接AE.若DE∥AC,計(jì)算AE的長(zhǎng)度等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=x與直線l2交點(diǎn)A的橫坐標(biāo)為2,將直線l1沿y軸向下平移4個(gè)單位長(zhǎng)度,得到直線l3,直線l3與y軸交于點(diǎn)B,與直線l2交于點(diǎn)C,點(diǎn)C的縱坐標(biāo)為﹣2.直線l2與y軸交于點(diǎn)D.
(1)求直線l2的解析式;
(2)求△BDC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交AB、AC于點(diǎn)D、E.
(1)若∠A = 40°,求∠DCB的度數(shù).
(2)若AE=4,△DCB的周長(zhǎng)為13,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,記∠A=x 度,回答下列問題:
(1)圖中共有三角形 個(gè).
(2)若 BD,CE 為△ABC 的角平分線,則∠BHC= 度(結(jié)果用含 x 的代數(shù)式
表示),并證明你的結(jié)論.
(3)若 BD,CE 為△ABC 的高線,則∠BHC= 度(結(jié)果用含 x 的代數(shù)式表示),并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com