(2009•石景山區(qū)一模)已知:如圖,直角三角形AOB的兩直角邊OA、OB分別在x軸的正半軸和y軸的負半軸上,C為線段OA上一點,OC=OB,拋物線y=x2-(m+1)x+m(m是常數(shù),且m>1)經(jīng)過A、C兩點.
(1)求出A、B兩點的坐標(可用含m的代數(shù)式表示);
(2)若△AOB的面積為2,求m的值.

【答案】分析:(1)讓拋物線的值y=0,可得出一個關于x的方程,運用十字相乘法可得出方程的兩根為1和m,由于m>1,且OA>OC,由此可得出OC=1,OA=m.那么OB=1即m=-1.由此可確定出拋物線的解析式.
(2)根據(jù)(1)可知:△AOB中,OA=m,OB=1,根據(jù)△AOB的面積即可求出m的值.
解答:解:(1)在拋物線y=x2-(m+1)x+m中,令y=0,
得x2-(m+1)x+m=0,
解得x=1或x=m(m>1).
所以,OC=1,OA=m.
∵OC=OB,
∴OB=1.
所以,A點的坐標為(m,0),
B點的坐標為(0,-1).

(2)△AOB的面積S=OA•OB=m,
所以,當S=2時,m=4.
點評:本題考查了二次函數(shù)與一元二次方程的關系,通過解一元二次方程得出OA、OC、OB的值是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年北京市石景山區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•石景山區(qū)二模)如圖,在平面直角坐標系中,O為坐標原點,△AOB為等邊三角形,點A的坐標是(4,0),點B在第一象限,AC是∠OAB的平分線,并且與y軸交于點E,點M為直線AC上一個動點,把△AOM繞點A順時針旋轉,使邊AO與邊AB重合,得到△ABD.
(1)求直線OB的解析式;
(2)當M與點E重合時,求此時點D的坐標;
(3)是否存在點M,使△OMD的面積等于3?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市石景山區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•石景山區(qū)二模)如圖,四邊形ABCD是菱形,點D的坐標是(0,),以點C為頂點的拋物線y=ax2+bx+c恰經(jīng)過x軸上的點A,B.
(1)求點C的坐標;
(2)若拋物線向上平移后恰好經(jīng)過點D,求平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省連云港市中考數(shù)學原創(chuàng)試卷大賽(12)(解析版) 題型:選擇題

(2009•石景山區(qū)二模)有一列數(shù)a1,a2,a3,a4,…,an,從第二個數(shù)開始,每一個數(shù)都等于1與它前面那個數(shù)的倒數(shù)的差,若a1=2,則a2008值為( )
A.2
B.-1
C.
D.2008

查看答案和解析>>

科目:初中數(shù)學 來源:2009年山東省日照市中考數(shù)學模擬試卷2(丁文斌)(解析版) 題型:選擇題

(2009•石景山區(qū)二模)有一列數(shù)a1,a2,a3,a4,…,an,從第二個數(shù)開始,每一個數(shù)都等于1與它前面那個數(shù)的倒數(shù)的差,若a1=2,則a2008值為( )
A.2
B.-1
C.
D.2008

查看答案和解析>>

同步練習冊答案