【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線(xiàn),以CD為直徑的⊙O分別交AC、BC于點(diǎn)M、N,過(guò)點(diǎn)N作NE⊥AB,垂足為E.
(1)若⊙O的半徑為,AC=6,求BN的長(zhǎng);
(2)求證:NE與⊙O相切.
【答案】(1)4;(2)見(jiàn)解析
【解析】
(1)由直角三角形斜邊上的中點(diǎn)到三頂點(diǎn)距離相等,得BD=CD,又由直徑所對(duì)的圓周角是直角得DN⊥BC,由三線(xiàn)合一知BN=NC,即可求得答案;
(2)證明切線(xiàn),一般先把圓心和切點(diǎn)連接,然后證明垂直,由(1)知,通過(guò)角的轉(zhuǎn)化,即可證明ON⊥NE,從而證得結(jié)論.
(1)連接DN,ON
∵⊙O的半徑為,
∴CD=5
∵∠ACB=90°,CD是斜邊AB上的中線(xiàn),
∴BD=CD=AD=5,
∴AB=10,
∴
∵CD為直徑
∴∠CND=90°,即DN⊥BC,且BD=CD
∴BN=NC=4
(2)∵∠ACB=90°,D為斜邊的中點(diǎn),
∴,
∴∠BCD=∠B,
∵OC=ON,
∴∠BCD=∠ONC,
∴∠ONC=∠B,
∴ON∥AB,
∵NE⊥AB,
∴ON⊥NE,
∴NE為⊙O的切線(xiàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,是內(nèi)心,,是邊上一點(diǎn),以點(diǎn)為圓心,為半徑的經(jīng)過(guò)點(diǎn),交于點(diǎn).
(1)求證:是的切線(xiàn);
(2)連接,若,,求圓心到的距離及的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:連接PC交⊙C于點(diǎn)N,若點(diǎn)P關(guān)于點(diǎn)N的對(duì)稱(chēng)點(diǎn)Q在⊙C的內(nèi)部,則稱(chēng)點(diǎn)P是⊙C的外稱(chēng)點(diǎn).
(1)當(dāng)⊙O的半徑為1時(shí),
①在點(diǎn)D(﹣1,﹣1),E(2,0),F(0,4)中,⊙O的外稱(chēng)點(diǎn)是 ;
②若點(diǎn)M(m,n)為⊙O的外稱(chēng)點(diǎn),且線(xiàn)段MO交⊙O于點(diǎn)G,求m的取值范圍;
(2)直線(xiàn)y=﹣x+b過(guò)點(diǎn)A(1,1),與x軸交于點(diǎn)B.⊙T的圓心為T(t,0),半徑為1.若線(xiàn)段AB上的所有點(diǎn)都是⊙T的外稱(chēng)點(diǎn),請(qǐng)直接寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A的平分線(xiàn)交BC于D,E為AB上一點(diǎn),DE=DC,以D為圓心,以DB的長(zhǎng)為半徑畫(huà)圓.
求證:(1)AC是⊙D的切線(xiàn);(2)AB+EB=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與坐標(biāo)軸交于A,B兩點(diǎn),與反比例函數(shù)y=的圖象交于M,N兩點(diǎn),過(guò)點(diǎn)M作MC⊥y軸于點(diǎn)C,且CM=1,過(guò)點(diǎn)N作ND⊥x軸于點(diǎn)D,且DN=1.已知點(diǎn)P是x軸(除原點(diǎn)O外)上一點(diǎn).
(1)直接寫(xiě)出M、N的坐標(biāo)及k的值;
(2)將線(xiàn)段CP繞點(diǎn)P按順時(shí)針或逆時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段PQ,當(dāng)點(diǎn)P滑動(dòng)時(shí),點(diǎn)Q能否在反比例函數(shù)的圖象上?如果能,求出所有的點(diǎn)Q的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由;
(3)當(dāng)點(diǎn)P滑動(dòng)時(shí),是否存在反比例函數(shù)圖象(第一象限的一支)上的點(diǎn)S,使得以P、S、M、N四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出符合題意的點(diǎn)S的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:二元一次不等式是指含有兩個(gè)未知數(shù)(即二元),并且未知數(shù)的次數(shù)是1次(即一次)的不等式;滿(mǎn)足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(duì)(x,y),所有這樣的有序數(shù)對(duì)(x,y)構(gòu)成的集合稱(chēng)為二元一次不等式(組)的解集.如:x+y>3是二元一次不等式,(1,4)是該不等式的解.有序?qū)崝?shù)對(duì)可以看成直角坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo).于是二元一次不等式(組)的解集就可以看成直角坐標(biāo)系內(nèi)的點(diǎn)構(gòu)成的集合.
(1)已知A(,1),B (1,﹣1),C (2,﹣1),D(﹣1,﹣1)四個(gè)點(diǎn),請(qǐng)?jiān)谥苯亲鴺?biāo)系中標(biāo)出這四個(gè)點(diǎn),這四個(gè)點(diǎn)中是x﹣y﹣2≤0的解的點(diǎn)是 .
(2)設(shè)的解集在坐標(biāo)系內(nèi)所對(duì)應(yīng)的點(diǎn)形成的圖形為G.
①求G的面積;
②P(x,y)為G內(nèi)(含邊界)的一點(diǎn),求3x+2y的取值范圍;
(3)設(shè)的解集圍成的圖形為M,直接寫(xiě)出拋物線(xiàn)y=x2+2mx+3m2﹣m﹣1與圖形M有交點(diǎn)時(shí)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)圖象的頂點(diǎn)為,其圖象與軸的交點(diǎn)、的橫坐標(biāo)分別為,.與軸負(fù)半軸交于點(diǎn),在下面五個(gè)結(jié)論中:
①;②;③;④只有當(dāng)時(shí),是等腰直角三角形;⑤使為等腰三角形的值可以有四個(gè).
其中正確的結(jié)論有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn) (a≠0)的對(duì)稱(chēng)軸為直線(xiàn)x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)中,函數(shù)值y與自變量之間的部分對(duì)應(yīng)關(guān)系如下表:
… | 0 | 1 | … | ||||
y | … | 0 | … |
(1)求該拋物線(xiàn)的表達(dá)式;
(2)如果將該拋物線(xiàn)平移,使它的頂點(diǎn)移到點(diǎn)M(2,4)的位置,那么其平移的方法是____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com