(2005•天津)在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).

(2)如果一個三角形的一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個特殊的倍角三角形,那么對于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.

(3)試求出一個倍角三角形的三條邊的長,使這三條邊長恰為三個連續(xù)的正整數(shù).
【答案】分析:(1)根據(jù)已知可求得各角的度數(shù),再根據(jù)三角函數(shù)求得各邊的關(guān)系,從而不難得到結(jié)論.
(2)根據(jù)已知表示各角的度數(shù),再根據(jù)正弦定理對式子進(jìn)行整理,從而得到結(jié)論;
(3)注意分三種情況進(jìn)行分析.
解答:(1)證明:∵∠A=2∠B,∠A=60°
∴∠B=30°,∠C=90°
∴c=2b,a=b
∴a2=3b2=b(b+c)

(2)解:關(guān)系式a2=b(b+c)仍然成立.
法一:證明:∵∠A=2∠B
∴∠C=180°-∠A-∠B=180°-3∠B
由正弦定理得
即a=2RsinA,b=2RsinB,c=2RsinC
∴b(b+c)=2RsinB(2RsinB+2RsinC)
=4R2sinB[sinB+sin(180°-3∠B)]
=4R2sinB(sinB+sin3∠B)
=4R2sinB(2sin2BcosB)
=4R2sin2B×sin2B
=4R2sin22B
又∵a2=4R2sin2A=4R2sin22B
∴a2=b(b+c)

(3)解:若△ABC是倍角三角形,由∠A=2∠B,應(yīng)有a2=b(b+c),且a>b.
當(dāng)a>c>b時,設(shè)a=n+1,c=n,b=n-1,(n為大于1的正整數(shù))
代入a2=b(b+c),得(n+1)2=(n-1)•(2n-1),解得n=5,
有a=6,b=4,c=5,可以證明這個三角形中,∠A=2∠B
當(dāng)c>a>b及a>b>c時,
均不存在三條邊長恰為三個連續(xù)正整數(shù)的倍角三角形.
邊長為4,5,6的三角形為所求.
點評:此題主要考查了直角三角形的判定,勾股定理及正弦定理等知識點的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2005•天津)在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).

(2)如果一個三角形的一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個特殊的倍角三角形,那么對于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.

(3)試求出一個倍角三角形的三條邊的長,使這三條邊長恰為三個連續(xù)的正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《四邊形》(03)(解析版) 題型:選擇題

(2005•天津)在四邊形ABCD中,O是對角線的交點,能判定這個四邊形是正方形的條件是( )
A.AC=BD,AB∥CD,AB=CD
B.AD∥BC,∠A=∠C
C.AO=BO=CO=DO,AC⊥BD
D.AO=CO,BO=DO,AB=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年天津市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•天津)在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).

(2)如果一個三角形的一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個特殊的倍角三角形,那么對于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.

(3)試求出一個倍角三角形的三條邊的長,使這三條邊長恰為三個連續(xù)的正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年天津市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2005•天津)在四邊形ABCD中,O是對角線的交點,能判定這個四邊形是正方形的條件是( )
A.AC=BD,AB∥CD,AB=CD
B.AD∥BC,∠A=∠C
C.AO=BO=CO=DO,AC⊥BD
D.AO=CO,BO=DO,AB=BC

查看答案和解析>>

同步練習(xí)冊答案