【題目】如圖,菱形OABC中,∠A=120°,OA=1,將菱形OABC繞點O按順時針方向旋轉90°,則圖中陰影部分的面積是_____.
【答案】.
【解析】
連接OB、OB′,陰影部分的面積等于扇形BOB′的面積減去兩個△OCB的面積和扇形OCA′的面積.根據(jù)旋轉角的度數(shù)可知:∠BOB′=90°,已知了∠A=120°,那么∠BOC=∠A′OB′=30°,可求得扇形A′OC的圓心角為30°,進而可根據(jù)各圖形的面積計算公式求出陰影部分的面積.
連接OB、OB′,過點A作AN⊥BO于點N,
菱形OABC中,∠A=120°,OA=1,
∴∠AOC=60°,∠COA′=30°,
∴AN=,
∴NO=,
∴BO=,
∴S△CBO=S△C′B′O=,
S扇形OCA′=,
S扇形OBB′=;
∴陰影部分的面積=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】在全體麗水人民的努力下,我市剿滅劣V類水“河道清淤”工程取得了階段性成果,如表是全市十個縣(市、區(qū))指標任務數(shù)的統(tǒng)計表;如圖是截止2017年3月31日和截止5月4日,全市十個縣(市、區(qū))指標任務累計完成數(shù)的統(tǒng)計圖.
全市十個縣(市、區(qū))指標任務數(shù)統(tǒng)計表
縣(市、區(qū)) | 任務數(shù)(萬方) |
A | 25 |
B | 25 |
C | 20 |
D | 12 |
E | 13 |
F | 25 |
G | 16 |
H | 25 |
I | 11 |
J | 28 |
合計 | 200 |
(1)截止3月31日,完成進度(完成進度=累計完成數(shù)÷任務數(shù)×100%)最快、最慢的縣(市、區(qū))分別是哪一個?
(2)求截止5月4日全市的完成進度;
(3)請結合圖表信息和數(shù)據(jù)分析,對Ⅰ縣完成指標任務的行動過程和成果進行評價.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售一款進價為每件40元的護膚品,調查發(fā)現(xiàn),銷售單價不低于40元且不高于80元時,該商品的日銷售量y(件)與銷售單價x(元)之間存在一次函數(shù)關系,當銷售單價為44元時,日銷售量為72件;當銷售單價為48元時,日銷售量為64件.
(1)求y與x之間的函數(shù)關系式;
(2)設該護膚品的日銷售利潤為w(元),當銷售單價x為多少時,日銷售利潤w最大,最大日銷售利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅和小明在操場做游戲,規(guī)則是:每人蒙上眼睛在一定距離外向設計好的圖形內擲小石子,若擲中陰影部分則小紅勝,否則小明勝,未擲入圖形內則重擲一次.
(1)若第一次設計的圖形(圖1)是半徑分別為20cm和30cm的同心圓.求游戲中小紅獲勝的概率你認為游戲對雙方公平嗎?請說明理由.
(2)若第二次設計的圖形(圖2)是兩個矩形,其中大矩形的長為80cm、寬為60cm,且小矩形到矩形的邊寬相等.要使游戲對雙方公平,則邊寬x應為多少cm?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半⊙O的直徑,點C,D為半圓O上的點,AE||OD,過點D的⊙O的切線交AC的延長線于點E,M為弦AC中點
(1)填空:四邊形ODEM的形狀是 ;
(2)①若,則當k為多少時,四邊形AODC為菱形,請說明理由;
②當四邊形AODC為菱形時,若四邊形ODEM的面積為4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是根據(jù)九年級某班50名同學一周的鍛煉情況繪制的條形統(tǒng)計圖,下面關于該班50名同學一周鍛煉時間的說法錯誤的是( )
A.平均數(shù)是6
B.中位數(shù)是6.5
C.眾數(shù)是7
D.平均每周鍛煉超過6小時的人數(shù)占該班人數(shù)的一半
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(初步認識)
(1)如圖,將△ABO繞點O順時針旋轉90°得到△MNO,連接AM、BM,
求證△AOM∽△BON.
(拓展延伸)
(2)如圖,在等邊△ABC中,點E在△ABC內部,且滿足AE2=BE2+CE2,用直尺和圓規(guī)作出所有的點E(保留作圖的痕跡,不寫作法).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若二次函數(shù)y=ax2+bx+c(a≠0)的圖象于x軸的交點坐標分別為(x1,0),(x2,0),且x1<x2,圖象上有一點M(x0,y0)在x軸下方,對于以下說法:①b2﹣4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0其中正確的是( 。
A.①③④B.①②④C.①②③D.②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com