【題目】如圖,四邊形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求證:∠A+∠C=180°.

【答案】證明:連接AC. ∵AB=20,BC=15,∠B=90°,
∴由勾股定理,得AC2=202+152=625.
又CD=7,AD=24,
∴CD2+AD2=625,
∴AC2=CD2+AD2
∴∠D=90°.
∴∠A+∠C=360°﹣180°=180°.

【解析】連接AC.首先根據(jù)勾股定理求得AC的長(zhǎng),再根據(jù)勾股定理的逆定理求得∠D=90°,進(jìn)而求出∠A+∠C=180°.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用勾股定理的概念和勾股定理的逆定理,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;如果三角形的三邊長(zhǎng)a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究規(guī)律:如圖,已知直線m∥n,A、B為直線n上的兩點(diǎn),C、P為直線m上的兩點(diǎn).
(1)請(qǐng)寫出圖中面積相等的各對(duì)三角形:
(2)如果A、B、C為三個(gè)定點(diǎn),點(diǎn)P在m上移動(dòng),那么無(wú)論P(yáng)點(diǎn)移動(dòng)到任何位置總有:與△ABC的面積相等;理由是:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一直角三角板與兩邊平行的紙條如圖所示放置,下列結(jié)論:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°,其中正確的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式x+32的解集是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若單項(xiàng)式2xmy3與單項(xiàng)式-3x2yn是同類項(xiàng),則m-n=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,∠BAG=45°,∠AGD=135°,∠E=∠F.求證:∠BAE=∠CGF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小軍用50元錢去買單價(jià)是8元的筆記本,則他剩余的錢Q(元)與他買這種筆記本的本數(shù)x之間的關(guān)系是(

A. Q=8x B. Q=8x﹣50 C. Q=50﹣8x D. Q=8x+50

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,∠BAG=45°,∠AGD=135°,∠E=∠F.求證:∠BAE=∠CGF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品現(xiàn)在的售價(jià)為每件60元,每星期可賣出300件.市場(chǎng)調(diào)查反映:每降價(jià)1元,每星期可多賣出20件.已知商品的進(jìn)價(jià)為每件40元,在顧客得實(shí)惠的前提下,商家還想獲得6080元的利潤(rùn),應(yīng)將銷售價(jià)格降低多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案