【題目】從甲、乙兩名同學(xué)中選拔一人參加“中華好詩詞”大賽,在相同的測(cè)試條件下,對(duì)兩人進(jìn)行了五次模擬,并對(duì)成績(jī)(單位:分)進(jìn)行了整理,計(jì)算出=83分,=82分,繪制成如下尚不完整的統(tǒng)計(jì)圖表.
甲、乙兩人模擬成績(jī)統(tǒng)計(jì)表
① | ② | ③ | ④ | ⑤ | |
甲成績(jī)/分 | 79 | 86 | 82 | a | 83 |
乙成績(jī)/分 | 88 | 79 | 90 | 81 | 72 |
根據(jù)以上信息,回答下列問題:
(1)a=
(2)請(qǐng)完成圖中表示甲成績(jī)變化情況的折線.
(3)經(jīng)計(jì)算S甲2=6,S乙2=42,綜合分析,你認(rèn)為選拔誰參加比賽更合適,說明理由.
(4)如果分別從甲、乙兩人5次的成績(jī)中各隨機(jī)抽取一次成績(jī)進(jìn)行分析,求抽到的兩個(gè)人的成績(jī)都大于82分的概率.
【答案】(1)85;(2)補(bǔ)全圖形見解析;(3)選拔甲參加比賽更合適,理由見解析;(4)抽到的兩個(gè)人的成績(jī)都大于82分的概率為.
【解析】(1)用總分減去已知分?jǐn)?shù)可得a;(2)畫折線圖;(3)從平均數(shù)和方差進(jìn)行分析;(4)列表求概率.
解:(1)根據(jù)題意得79+86+82+a+83=5×83,解得a=85;故答案為85;
(2)如圖,
(3)選拔甲參加比賽更合適,理由如下:
∵>,且S甲2<S乙2,
∴甲的平均成績(jī)比乙的平均成績(jī)高,且甲的成就比較穩(wěn)定,
∴選拔甲參加比賽更合適;
(4)列表為:
乙 甲 | 79 | 86 | 82 | 85 | 83 |
88 | 88,79 | 88,86 | 88,82 | 88,85 | 88,83 |
79 | 79,79 | 79,86 | 79,82 | 79,85 | 79,83 |
90 | 90,79 | 90,86 | 90,82 | 90,85 | 90,83 |
81 | 81,79 | 81,86 | 81,82 | 81,85 | 81,83 |
72,79 | 72,86 | 72,82 | 72,85 | 72,83 |
共有25可等可能的結(jié)果數(shù),其中抽到的兩個(gè)人的成績(jī)都大于82分的結(jié)果數(shù)為6,
所以抽到的兩個(gè)人的成績(jī)都大于82分的概率=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)實(shí)踐活動(dòng)小組借助載有測(cè)角儀的無人機(jī)測(cè)量象山嵐光閣與文明湖湖心亭之間的距離.如圖,無人機(jī)所在位置P與嵐光閣閣頂A、湖心亭B在同一鉛垂面內(nèi),P與B的垂直距離為300米,A與B的垂直距離為150米,在P處測(cè)得A、B兩點(diǎn)的俯角分別為α、β,且tanα=,tanβ=﹣1,試求嵐光閣與湖心亭之間的距離AB.(計(jì)算結(jié)果若含有根號(hào),請(qǐng)保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD的四個(gè)角向內(nèi)折疊鋪平,恰好拼成一個(gè)無縫隙無重疊的矩形EFGH,若EH=5,EF=12,則矩形ABCD的面積是( )
A. 13 B. C. 60 D. 120
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動(dòng)點(diǎn)從出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)碰到矩形的邊時(shí)反彈,反彈時(shí)反射角等于入射角(),當(dāng)點(diǎn)第2019次碰到矩形的邊時(shí),點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義符號(hào)min{a,b}的含義為:當(dāng)a≥b時(shí)min{a,b}=b;當(dāng)a≤b時(shí)min{a,b}=a.如:min{1,-3}=﹣3,min{﹣4,﹣2}=﹣4,則min{﹣x2+2,﹣x}的最大值是( 。
A. ﹣1 B. ﹣2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,BD=DF;
求證:(1)CF=EB.
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AB的垂直平分線DE分別交AB、AC于D、E.
(1)若AC=12,BC=10,求△EBC的周長(zhǎng);
(2)若∠A=40°,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn),記頂點(diǎn)都是整點(diǎn)的三角形為整點(diǎn)三角形.如圖,已知整點(diǎn)A(2,3),B(4,4),請(qǐng)?jiān)谒o網(wǎng)格區(qū)域(含邊界)上按要求畫整點(diǎn)三角形.
(1)在圖1中畫一個(gè)△PAB,使點(diǎn)P的橫、縱坐標(biāo)之和等于點(diǎn)A的橫坐標(biāo);
(2)在圖2中畫一個(gè)△PAB,使點(diǎn)P,B橫坐標(biāo)的平方和等于它們縱坐標(biāo)和的4倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是對(duì)角線BD上的一點(diǎn),過點(diǎn)C作CQ∥DB,且CQ=DP,連接AP、BQ、PQ.
(1)求證:△APD≌△BQC;
(2)若∠ABP+∠BQC=180°,求證:四邊形ABQP為菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com