【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( 。
A.
B.
C.
D.

【答案】C
【解析】解:A、對(duì)于直線y=ax+b來說,由圖象可以判斷,a>0,b>0;而對(duì)于拋物線y=ax2﹣bx來說,對(duì)稱軸x= >0,應(yīng)在y軸的右側(cè),故不合題意,圖形錯(cuò)誤;
B、對(duì)于直線y=ax+b來說,由圖象可以判斷,a<0,b>0;而對(duì)于拋物線y=ax2+bx來說,對(duì)稱軸x= <0,應(yīng)在y軸的左側(cè),故不合題意,圖形錯(cuò)誤;
C、對(duì)于直線y=ax+b來說,由圖象可以判斷,a>0,b>0;而對(duì)于拋物線y=ax2+bx來說,圖象開口向上,對(duì)稱軸x= >0,應(yīng)在y軸的右側(cè),故符合題意;
D、對(duì)于直線y=ax+b來說,由圖象可以判斷,a>0,b>0;而對(duì)于拋物線y=ax2+bx來說,圖象開口向下,a<0,故不合題意,圖形錯(cuò)誤;
故選:C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用一次函數(shù)的圖象和性質(zhì)和二次函數(shù)的圖象的相關(guān)知識(shí)可以得到問題的答案,需要掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn);二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】哈市某中學(xué)為了解學(xué)生的課余生活情況,學(xué)校決定圍繞“在欣賞音樂、讀課外書、體育運(yùn)動(dòng).其他活動(dòng)中,你最喜歡的課余生活種類是什么?(只寫一類)”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查問卷適當(dāng)整理后繪制成如圖所示的不完整的條形統(tǒng)計(jì)圖,其中最喜歡欣賞音樂的學(xué)生占被抽取人數(shù)的12%,請(qǐng)你根據(jù)以上信息解答下列問題:
(1)在這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)最喜歡讀課外書的學(xué)生占被抽取人數(shù)的百分?jǐn)?shù)是多少?
(3)如果全校有1000名學(xué)生,請(qǐng)你估計(jì)全校最喜歡體育運(yùn)動(dòng)的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)瓶子的容積為1 L,瓶內(nèi)裝著溶液,當(dāng)瓶子正放時(shí),瓶內(nèi)溶液的高度為20 cm,當(dāng)瓶子倒放時(shí),空余部分的高度為5 cm.現(xiàn)把瓶內(nèi)的溶液全部倒在一個(gè)圓柱形的杯子里,杯內(nèi)的溶液高度為10 cm.

求:(1)瓶內(nèi)溶液的體積;

(2)圓柱形杯子的內(nèi)底面半徑(π取3.14,結(jié)果精確到0.1 cm).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為4,點(diǎn)E、F分別在邊AB、ABC上,且AE=BF=1,CE、DF相交于點(diǎn)O,下列結(jié)論: ①∠DOC=90°,②OC=OE,③tan∠OCD= ,④△COD的面積等于四邊形BEOF的面積中,正確的有 (

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線AC下方拋物線上的動(dòng)點(diǎn).

(1)求拋物線的解析式;
(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=kx+b與拋物線y= x2交于A(x1 , y1)、B(x2 , y2)兩點(diǎn),當(dāng)OA⊥OB時(shí),直線AB恒過一個(gè)定點(diǎn),該定點(diǎn)坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣ x2+ x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為點(diǎn)E.

(1)判斷△ABC的形狀,并說明理由;
(2)經(jīng)過B,C兩點(diǎn)的直線交拋物線的對(duì)稱軸于點(diǎn)D,點(diǎn)P為直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△PCD的面積最大時(shí),Q從點(diǎn)P出發(fā),先沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到拋物線的對(duì)稱軸上點(diǎn)M處,再沿垂直于拋物線對(duì)稱軸的方向運(yùn)動(dòng)到y(tǒng)軸上的點(diǎn)N處,最后沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)A處停止.當(dāng)點(diǎn)Q的運(yùn)動(dòng)路徑最短時(shí),求點(diǎn)N的坐標(biāo)及點(diǎn)Q經(jīng)過的最短路徑的長;
(3)如圖2,平移拋物線,使拋物線的頂點(diǎn)E在射線AE上移動(dòng),點(diǎn)E平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)E′,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)A′,將△AOC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至△A1OC1的位置,點(diǎn)A,C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A1 , C1 , 且點(diǎn)A1恰好落在AC上,連接C1A′,C1E′,△A′C1E′是否能為等腰三角形?若能,請(qǐng)求出所有符合條件的點(diǎn)E′的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+2過B(﹣2,6),C(2,2)兩點(diǎn).

(1)試求拋物線的解析式;
(2)記拋物線頂點(diǎn)為D,求△BCD的面積;
(3)若直線y=﹣ x向上平移b個(gè)單位所得的直線與拋物線段BDC(包括端點(diǎn)B、C)部分有兩個(gè)交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別為(8,0)、(0,2 ),C是AB的中點(diǎn),過點(diǎn)C作y軸的垂線,垂足為D,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動(dòng),過點(diǎn)P作x軸的垂線,垂足為E,連接BP、EC.當(dāng)BP所在直線與EC所在直線第一次垂直時(shí),點(diǎn)P的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案