精英家教網 > 初中數學 > 題目詳情
精英家教網如圖,線段AB經過圓心O,交⊙O于A、C兩點,點D在⊙O上,∠A=∠B=30°.
(1)求證:BD是⊙O的切線;
(2)若點N在⊙O上,且DN⊥AB,垂足為M,NC=10,求AD的長.
分析:(1)連接OD,由切線的判定定理可證得OD⊥BD,則BD是⊙O的切線;
(2)連接CD,由垂徑定理可得:CD=CN=10,在直角三角形ADC中,由勾股定理可求出AD的長.
解答:(1)證明:連接OD,
∵∠A=∠B=30°,OD=OC,
∴∠A=∠ADO=30°,精英家教網
∴∠DOC=60°,
∴∠ODB=90°,
即OD⊥BD,
∴BD是⊙O的切線;

(2)解:連接CD,
∵DN⊥AB,
∴弧DC=弧CN,
∴CD=CN=10,
∵AC是直徑,
∴∠ADC=90°,
∵∠A=30°,
∴AC=20,
∴AD=
202-102
=10
3
點評:本題考查了切線的判定.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.同時考查了垂徑定理和勾股定理.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

22、如圖,線段AB經過圓心O,交⊙O于點A、C,∠BAD=∠B=30°,邊BD交圓于點D,求證BD是⊙O的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,線段AB經過圓心O,交⊙O于點A、C,BD是⊙O的切線.∠BAD=30°,邊BD交圓于點D,求∠B.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,線段AB經過圓心O,交⊙O于點A,C,點D在⊙O上,連接AD,BD,∠A=∠B=30°,圓的半徑R.
(1)求證:BD是⊙O的切線;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,線段AB經過圓心O,交⊙O于點A、C,∠BAD=∠B=30°,邊BD交圓于點D.
(1)求證:BD是⊙O的切線.
(2)若⊙O的半徑為2,求弦AD的長.

查看答案和解析>>

科目:初中數學 來源:2012屆浙江省溫嶺市四校聯(lián)考九年級上學期期中考試數學試卷(帶解析) 題型:解答題

如圖,線段AB經過圓心O,交⊙O于點A、C,∠BAD=∠B=30°,邊BD交圓于點D。

(1)求證BD是⊙O的切線。
(2)若⊙O的半徑為2,求弦AD的長。

查看答案和解析>>

同步練習冊答案