【題目】如圖,某風(fēng)景區(qū)的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB^BC,圖中陰影是草地,其余是水面.那么乘游艇游點C出發(fā),行進(jìn)速度為每小時11千米,到達(dá)對岸AD最少要用 小時.
【答案】0.4
【解析】
連接AC,在直角△ABC中,已知AB,BC可以求AC,根據(jù)AC,CD,AD的長度符合勾股定理確定AC⊥CD,則可計算△ACD的面積,又因為△ACD的面積可以根據(jù)AD邊和AD邊上的高求得,故根據(jù)△ACD的面積可以求得C到AD的最短距離,即△ACD中AD邊上的高.
解:連接AC,
在直角△ABC中,AB=3km,BC=4km,則AC==5km,
∵CD=12km,AD=13km,故存在AD2=AC2+CD2
∴△ACD為直角三角形,且∠ACD=90°,
∴△ACD的面積為×AC×CD=30km2,
∵AD=13km,∴AD邊上的高,即C到AD的最短距離為km,
游艇的速度為11km/小時,
需要時間為小時=0.4小時.
故答案為 0.4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在今年我市初中學(xué)業(yè)水平考試體育學(xué)科的女子800米耐力測試中,某考點同時起跑的小瑩和小梅所跑的路程S(米)與所用時間t(秒)之間的函數(shù)圖象分別為線段OA和折線OBCD,下列說法正確的是( 。
A、小瑩的速度隨時間的增大而增大B、小梅的平均速度比小瑩的平均速度大
C、在起跑后180秒時,兩人相遇D、在起跑后50秒時,小梅在小瑩的前面
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點P的坐標(biāo)為(x1,y1),點Q的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2,若PQ為某個等腰三角形的腰,且該等腰三角形的底邊與x軸平行,則稱該等腰三角形為點P,Q的“相關(guān)等腰三角形”.下圖為點P,Q的“相關(guān)等腰三角形”的示意圖.
(1)已知點A的坐標(biāo)為(0,1),點B的坐標(biāo)為(-,0),則點A,B的“相關(guān)等腰三角形”的頂角為 °;
(2)若點C的坐標(biāo)為(0,),點D在直線y=4上,且C,D的“相關(guān)等腰三角形”為等邊三角形,求直線CD的表達(dá)式;
(3)⊙O的半徑為,點N在雙曲線y=﹣上.若在⊙O上存在一點M,使得點M、N的“相關(guān)等腰三角形”為直角三角形,直接寫出點N的橫坐標(biāo)xN的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(12,0),O為坐標(biāo)原點,P是線段OA上任一點(不含端點O、A),二次函數(shù)y1的圖象過P、O兩點,二次函數(shù)y2的圖象過P、A兩點,它們的開口均向下,頂點分別為B、C,射線OB與射線AC相交于點D.則當(dāng)OD=AD=9時,這兩個二次函數(shù)的最大值之和等于( 。
A. 8 B. 3 C. 2 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明受《烏鴉喝水》故事的啟發(fā),利用量桶和體積相同的小球進(jìn)行了如下操作:請根據(jù)圖中給出的信息,解答下列問題:
(1)放入一個小球量桶中水面升高 cm;
(2)求放入小球后量桶中水面的高度y(cm)與小球個數(shù)x(個)之間的函數(shù)關(guān)系式;
(3)當(dāng)量桶中水面上升至距離量桶頂部3cm時,應(yīng)在量桶中放入幾個小球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形中,動點從點出發(fā),以每秒1個單位長度的速度沿向點運動,同時動點從點出發(fā),以每秒2個單位長度的速度沿方向運動,當(dāng)運動到點時,、兩點同時停止運動.設(shè)點運動的時間為,的面積為,則與的函數(shù)關(guān)系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,E是BC邊上一點,將矩形沿AE折疊,點B落在點B'處,當(dāng)△B'EC是直角三角形時,BE的長為( )
A.2B.6C.3或6D.2或3或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長為1個單位,以O為原點建立平面直角坐標(biāo)系,圓心為 A(3,0)的⊙A被y軸截得的弦長BC=8.
解答下列問題:
(1)求⊙A 的半徑;
(2)請在圖中將⊙A 先向上平移 6 個單位,再向左平移8個單位得到⊙D,并寫出圓心D的坐標(biāo);
(3)觀察你所畫的圖形,對⊙D 與⊙A 的位置關(guān)系作出合情的猜想,并直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)有兩點E、F滿足AE=FC= 4,EF =6,AE⊥EF,CF⊥EF,則正方形ABCD的面積為 ( )
A.24B.25C.48D.50
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com