【題目】為了解學(xué)生每天的睡眠情況,某初中學(xué)校從全校 800 名學(xué)生中隨機(jī)抽取了 40 名學(xué)生,調(diào)查了他們平均每天的睡眠時(shí)間(單位: h ,統(tǒng)計(jì)結(jié)果如下:

98,10.57,98,10,9.5,89,9.57.5,9.59,8.57.5,10,9.5,89,

7,9.5,8.5,97,99,7.58.5,8.59,8,7.5,9.5,10,9.5,8.5,9,89.

在對(duì)這些數(shù)據(jù)整理后,繪制了如下的統(tǒng)計(jì)圖表:

睡眠時(shí)間分組統(tǒng)計(jì)表 睡眠時(shí)間分布情況

組別

睡眠時(shí)間分組

人數(shù)(頻數(shù))

1

7t8

m

2

8t9

11

3

9t10

n

4

10t11

4

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

1 m = , n = a = , b =

2)抽取的這 40 名學(xué)生平均每天睡眠時(shí)間的中位數(shù)落在 組(填組別) ;

3)如果按照學(xué)校要求,學(xué)生平均每天的睡眠時(shí)間應(yīng)不少于 9 h,請(qǐng)估計(jì)該校學(xué)生中睡眠時(shí)間符合要求的人數(shù).

【答案】17,1817.5%,45%;(23;(3440.

【解析】

1)根據(jù)40名學(xué)生平均每天的睡眠時(shí)間即可得出結(jié)果;

2)由中位數(shù)的定義即可得出結(jié)論;

3)由學(xué)??cè)藬?shù)×該校學(xué)生中睡眠時(shí)間符合要求的人數(shù)所占的比例,即可得出結(jié)果.

17≤t8時(shí),頻數(shù)為m=7;

9≤t10時(shí),頻數(shù)為n=18;

a=×100%=17.5%b=×100%=45%;

故答案為:7,18,17.5%,45%

2)由統(tǒng)計(jì)表可知,抽取的這40名學(xué)生平均每天睡眠時(shí)間的中位數(shù)為第20個(gè)和第21個(gè)數(shù)據(jù)的平均數(shù),

∴落在第3組;

故答案為:3;

3)該校學(xué)生中睡眠時(shí)間符合要求的人數(shù)為800×=440(人);

答:估計(jì)該校學(xué)生中睡眠時(shí)間符合要求的人數(shù)為440人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,ABAC,以AB為直徑的圓OBC于點(diǎn)D,交AC于點(diǎn)E,過(guò)點(diǎn)DDFAC于點(diǎn)F,交AB的延長(zhǎng)線于點(diǎn)G

1)求證:DFO的切線;

2)已知BD,CF2,求DFBG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,點(diǎn)D在雙曲線k≠0)上.將正方形沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在該雙曲線上,則a的值是

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+3經(jīng)過(guò)A(3,0)B(1,0)兩點(diǎn)(如圖1),頂點(diǎn)為M.

(1)a、b的值;

(2)設(shè)拋物線與y軸的交點(diǎn)為Q(如圖1),直線y=2x+9與直線OM交于點(diǎn)D. 現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD.當(dāng)拋物線的頂點(diǎn)平移到D點(diǎn)時(shí),Q點(diǎn)移至N點(diǎn),求拋物線上的兩點(diǎn)MQ間所夾的曲線MQ掃過(guò)的區(qū)域的面積;

(3)設(shè)直線y=2x+9y軸交于點(diǎn)C,與直線OM交于點(diǎn)D(如圖2).現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD.若平移的拋物線與射線CD(含端點(diǎn)C)沒(méi)有公共點(diǎn)時(shí),試探求其頂點(diǎn)的橫坐標(biāo)h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在直角坐標(biāo)系中,直線lx、y軸分別交于點(diǎn)A4,0)、B0,)兩點(diǎn),∠BAO的角平分線交y軸于點(diǎn)D 點(diǎn)C為直線l上一點(diǎn),以AC為直徑的⊙G經(jīng)過(guò)點(diǎn)D,且與x軸交于另一點(diǎn)E

1)求證:y軸是⊙G的切線;

2)求出⊙G的半徑r,并直接寫(xiě)出點(diǎn)C的坐標(biāo);

3)如圖2,若點(diǎn)F為⊙G上的一點(diǎn),連接AF,且滿足∠FEA=45°,請(qǐng)求出EF的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)C在線段AB上,(點(diǎn)C不與A、B重合),分別以AC、BC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點(diǎn)P

(觀察猜想)

AEBD的數(shù)量關(guān)系是   ;

②∠APD的度數(shù)為   

(數(shù)學(xué)思考)

如圖2,當(dāng)點(diǎn)C在線段AB外時(shí),(1)中的結(jié)論①、②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明;

(拓展應(yīng)用)

如圖3,點(diǎn)E為四邊形ABCD內(nèi)一點(diǎn),且滿足∠AED=∠BEC90°AEDE,BECE,對(duì)角線AC、BD交于點(diǎn)PAC10,則四邊形ABCD的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+x+2x軸交于點(diǎn)A40)與y軸交于點(diǎn)B.點(diǎn)M在線段AB上,其橫坐標(biāo)為mPMy軸,與拋物線交點(diǎn)為點(diǎn)PPQx軸,與拋物線交點(diǎn)為點(diǎn)Q

1)求a的值、并寫(xiě)出此拋物線頂點(diǎn)的坐標(biāo);

2)求m為何值時(shí),PMQ為等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰中, ,點(diǎn)邊上一點(diǎn),在上取點(diǎn),使

1)求證: ;

2)若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B、C、DO上的四個(gè)點(diǎn),ADO的直徑,過(guò)點(diǎn)C的切線與AB的延長(zhǎng)線垂直于點(diǎn)E,連接AC、BD相交于點(diǎn)F

1)求證:AC平分∠BAD;

2)若O的半徑為AC6,求DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案