(2005•眉山)如圖是二次函數(shù)y=(x+2)2的圖象,頂點(diǎn)為A,與y軸的交點(diǎn)為B.
(1)求經(jīng)過A、B兩點(diǎn)的直線的函數(shù)關(guān)系式;
(2)若⊙M的圓心為M(m,0),半徑為r,過A向該圓作切線,切點(diǎn)為N.請(qǐng)求出所有能使△AMN與△ABO全等的m、r的值;
(3)請(qǐng)?jiān)诘诙笙拗械膾佄锞上找一點(diǎn)C,使△ABC的面積與△ABO的面積相等.

【答案】分析:(1)根據(jù)拋物線的解析式可得出A、B兩點(diǎn)的坐標(biāo),然后用待定系數(shù)法即可求出過A、B兩點(diǎn)的直線的解析式.
(2)由于AN與⊙M相切,且切點(diǎn)為N,要想使△AMN≌△ABO,兩直角三角形的斜邊必相等,因此|AM|=|AB|,由此可得出M點(diǎn)的坐標(biāo)以及半徑的長(zhǎng).
(3)可設(shè)存在這樣的C點(diǎn),過C作CD⊥x軸于D,可根據(jù)拋物線的解析式設(shè)出C點(diǎn)的坐標(biāo),進(jìn)而可表示出CD、OD的長(zhǎng),然后可根據(jù)梯形OBCD的面積=△ACD的面積+△ABC的面積+△AOB的面積,由于△ABC的面積與△ABO的面積相等,因此等量關(guān)系可列成:
梯形OBCD的面積=△ACD的面積+2倍的△ABO的面積,由此可求出C點(diǎn)的坐標(biāo).
解答:解:(1)A(-2,0),B(0,4)
設(shè)過A、B的直線的函數(shù)關(guān)系式為y=kx+b
,
解得:
∴函數(shù)關(guān)系式為:y=2x+4.

(2)要使△AMN與△ABO全等,
|AM|=|AB|=
即|m+2|=2,
∴m=2-2或m=-2-2
∴r=2或4.
故有四組解:,


(3)過C作CD⊥x軸于D點(diǎn),
令C(a,b),有b=(a+2)2
∴|CD|=b,|BO|=4,|DO|=-a,|DA|=-2-a,|OA|=2
S△ABC=S梯形CDOB-S△CDA-S△AOB
=(b+4)(-)-(-2-a)b-4
而S△ABC=S△AOB=4
因此原式可化簡(jiǎn)為:-2a+b-8=0
∴(a+2)2-2a-8=0
a1=-1+(不合題意舍去)a2=-1-
∴C(-1-,6-2).
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求一次函數(shù)解析式、三角形全等、二次函數(shù)的應(yīng)用等知識(shí)點(diǎn),綜合性強(qiáng),考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年四川省眉山市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•眉山)如圖是二次函數(shù)y=(x+2)2的圖象,頂點(diǎn)為A,與y軸的交點(diǎn)為B.
(1)求經(jīng)過A、B兩點(diǎn)的直線的函數(shù)關(guān)系式;
(2)若⊙M的圓心為M(m,0),半徑為r,過A向該圓作切線,切點(diǎn)為N.請(qǐng)求出所有能使△AMN與△ABO全等的m、r的值;
(3)請(qǐng)?jiān)诘诙笙拗械膾佄锞上找一點(diǎn)C,使△ABC的面積與△ABO的面積相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《圖形的對(duì)稱》(01)(解析版) 題型:選擇題

(2005•眉山)如圖,是由大小一樣的小正方形組成的網(wǎng)格,△ABC的三個(gè)頂點(diǎn)均落在小正方形的頂點(diǎn)上.在網(wǎng)格上能畫出的三個(gè)頂點(diǎn)都落在小正方形的頂點(diǎn)上,且與△ABC成軸對(duì)稱的三角形共有( )

A.5個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

(2005•眉山)如圖,P是⊙O外一點(diǎn),PAB、PCD是⊙O的割線,分別交⊙O于點(diǎn)A、B、C、D,PO⊥BD,垂足為M.根據(jù)以上條件,寫出三個(gè)正確結(jié)論:
    ;
    ;
   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年四川省眉山市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2005•眉山)如圖,P是⊙O外一點(diǎn),PAB、PCD是⊙O的割線,分別交⊙O于點(diǎn)A、B、C、D,PO⊥BD,垂足為M.根據(jù)以上條件,寫出三個(gè)正確結(jié)論:
    ;
    ;
   

查看答案和解析>>

同步練習(xí)冊(cè)答案