【題目】(11分)如圖1,點A(a,b)在平面直角坐標系xOy中,點A到坐標軸的垂線段AB,AC與坐標軸圍成矩形OBAC,當這個矩形的一組鄰邊長的和與積相等時,點A稱作“垂點”,矩形稱作“垂點矩形”.

(1)在點P(1,2),Q(2,-2),N(,-1)中,是“垂點”的點為 ;

(2)點M(-4,m)是第三象限的“垂點”,直接寫出m的值

(3)如果“垂點矩形”的面積是,且“垂點”位于第二象限,寫出滿足條件的“垂點”的坐標 ;

(4)如圖2,平面直角坐標系的原點O是正方形DEFG的對角線的交點,當正方形DEFG的邊上存在“垂點”時,GE的最小值為8.

【答案】(1)Q;(2);(3)(-4,),(-,4);(4)8

【解析】

1)根據(jù)垂點的意義直接判斷即可得出結論

2)根據(jù)垂點的意義建立方程即可得出結論;

3)根據(jù)垂點的意義和矩形的面積建立方程即可得出結論

4)先確定出直線EF的解析式,利用垂點的意義建立方程,利用非負性即可確定出m的范圍,即可得出結論.

1P12),1+2=3,1×2=2,

23∴點P不是垂點”,

Q2,﹣2),2+2=42×2=4,Q垂點”.

N,﹣1),+1=×1=

,∴點N不是垂點”,

故答案為:Q;

2∵點 M(﹣4m)是第三象限的垂點”,4+(﹣m)=4×(﹣m),m=﹣,

故答案為:;

3)設垂點的坐標為(a,b),a+b=﹣ab,

垂點矩形的面積為,ab=

:﹣a+b=﹣ab=

解得a=﹣4,b=a=﹣,b=4垂點的坐標為(﹣4,)或(﹣4),

故答案為:(﹣4)或(﹣,4),.

4)設點Em,0)(m0),

∵四邊形EFGH是正方形,F0m),y=﹣x+m.設邊EF上的垂點的坐標為(a,﹣a+m),a+(﹣a+m)=a(﹣a+m

a2am=﹣m,a2=0m24m=mm40,

m0m40,m4,m的最小值為4,EG的最小值為2m=8,

故答案為:8

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線OA的方向是北偏東15°,射線OB的方向是北偏西40°,AOB=AOC,射線ODOB的反向延長線

1)射線OC的方向是___________________

2)求COD的度數(shù);

3)若射線OE平分COD,求AOE的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在□ABCD中,∠ABC,BCD的平分線分別交AD于點EF,BE,CF相交于點G

(1)求證:BECF;

(2)若AB=aCF=b,寫出求BE的長的思路

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,平面直角坐標系中,A(0,4),B(0,2),點Cx軸上一點,點DOC的中點.

(1)求證:BD∥AC;

(2)若點Cx軸正半軸上,且BDAC的距離等于1,求點C的坐標;

(3)如果OE⊥AC于點E,當四邊形ABDE為平行四邊形時,求直線AC的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的頂點為(1,0),且經過點(0,1).
(1)求該拋物線對應的函數(shù)的解析式;
(2)將該拋物線向下平移m(m>0)個單位,設得到的拋物線的頂點為A,與x軸的兩個交點為B、C,若△ABC為等邊三角形.
①求m的值;
②設點A關于x軸的對稱點為點D,在拋物線上是否存在點P,使四邊形CBDP為菱形?若存在,寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形,,在邊上,且;將沿對折至,延長交邊于點,連結,下列結論:①.;.;. .其中,正確的結論有__________________.(填上你認為正確的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖的數(shù)陣是由77個偶數(shù)排成:

(1)如圖中任意作一個平行四邊形框,設左上角的數(shù)為x,那么其他3個數(shù)從小到大可分別表示為   

(2)小紅說這4個數(shù)的和是292,能求出這4個數(shù)嗎?若存在,請求出這4個數(shù).不存在說明理由.

(3)小明說4個數(shù)的和是420,存在這樣的數(shù)嗎?若存在,請求出這4個數(shù),不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把ABC沿EF翻折,疊合后的圖形如圖.若∠A=60°,1=95°,則∠2的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形的頂點與坐標原點重合,點的坐標為,點軸的負半軸上,點,分別在邊,上,且,,一次函數(shù)的圖象過點,反比例函數(shù)的圖象經過點,且與的交點為

(1)直接寫出反比例函數(shù)解析式   一次函數(shù)的解析式        ;

(2)若點在直線上,且使OPM的面積與四邊形的面積相等,求點的坐標.

查看答案和解析>>

同步練習冊答案