【題目】如圖,已知是的直徑,,是的弦,交于點,過點作的切線交的延長線于點,連接并延長交的延長線于點.
(1)求證:是的切線;
(2)若,,求線段的長.
【答案】(1)見解析(2)8
【解析】
(1)連接OC,根據(jù)平行線的性質(zhì)得到∠1=∠ACB,由圓周角定理得到∠1=∠ACB=90°,根據(jù)線段垂直平分線的性質(zhì)得到DB=DC,求得∠DBE=∠DCE,根據(jù)切線的性質(zhì)得到∠DBO=90°,求得OC⊥DC,于是得到結(jié)論;
(2)根據(jù)切線的性質(zhì)得出是等邊三角形,再根據(jù)等邊三角形的性質(zhì)即可解答.
(1)證明:連接
∵
∴
∵是的直徑
∴
∴,由垂徑定理得垂直平分.
∴
∴
又∵
∴,即
∵為的切線,是半徑
∴
∴,即,
∵是的半徑.
∴是的切線
(2)由(1)知是的切線
∴
在中,
∴
又∵
∴是等邊三角形
∴
∴
∴
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形中,、、、分別是、、、的中點,要使四邊形是菱形,則四邊形只需要滿足的一個條件是( )
A.B.四邊形是菱形C.對角線D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的y與x的部分對應(yīng)值如表:
x | 1 | 0 | 2 | 3 | 4 |
y | 5 | 0 | 4 | 3 | 0 |
下列結(jié)論:①拋物線的開口向上;②拋物線的對稱軸為直線x=2;③當0<x<4時,y>0;④拋物線與x軸的兩個交點間的距離是4;⑤若A(,2),B(,3)是拋物線上兩點,則,其中正確的個數(shù)是 ( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點并經(jīng)過B點,已知A點坐標是(2,0),B點的坐標是(8,6).
(1)求二次函數(shù)的解析式;
(2)該二次函數(shù)的對稱軸交x軸于C點,連接BC,并延長BC交拋物線于E點,連接BD,DE,求△BDE的面積;
(3)拋物線上有一個動點P,與A,D兩點構(gòu)成△ADP,是否存在2S△ADP=S△BCD?若存在請求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,平面直角坐標系中,A(0,8)、B(6,0) .動點P從A點出發(fā),沿y軸負半軸方向運動,速度每秒2個單位長度,動點Q從B點出發(fā),沿BA方向向A點運動,速度每秒1個單位長度.兩點同時出發(fā),Q點到達A點時,兩點同時停止運動,運動時間為t秒.
(1)當△APQ面積為12,求t的值.
(2)當△APQ的外心(三角形的外心是三角形三邊垂直平分線的交點)在△APQ的邊上時,求t值.
(3)若Q點在直線AB上運動,過Q點作QH⊥x軸,垂足為H,當△QBH與△ABO的相似比為1:2時,直接寫出Q點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,平行四邊形ABCD中,以B為坐標原點建立如圖所示直角坐標系,AB⊥AC,AB=3,AD=5,點P在邊AD上運動(點P不與A重合,但可以與D點重合),以P為圓心,PA為半徑的⊙P與對角線AC交于A,E兩點.
(1) 直接寫出點A的坐標(____,____)設(shè)AP為x,直接寫出P點坐標(_______,______)(用含x的代數(shù)式表示)
(2)當⊙P與邊CD相切于點F時,求P點的坐標;
(3)隨著AP的變化,⊙P與平行四邊形ABCD的邊的公共點的個數(shù)也在變化,直接寫出公共點的個數(shù)與相對應(yīng)的AP的取值之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個四位數(shù),記千位上和百位上的數(shù)字之和為,十位上和個位上的數(shù)字之和為,如果,那么稱這個四位數(shù)為“和平數(shù)”.例如:1423,,,因為,所以1423是“和平數(shù)”.
(1)直接寫出:最小的“和平數(shù)”是_________________,最大的“和平數(shù)”是_______________;
(2)求個位上的數(shù)字是千位上的數(shù)字的兩倍且百位上的數(shù)字與十位上的數(shù)字之和是12的倍數(shù)的所有“和平數(shù)”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.△ABC的三個頂點A,B,C都在格點上,將△ABC繞點A逆時針方向旋轉(zhuǎn)90°得到△AB′C′
(1)在正方形網(wǎng)格中,畫出△AB′C′;
(2)分別畫出旋轉(zhuǎn)過程中,點B點C經(jīng)過的路徑;
(3)計算線段BC在變換到B′C′的過程中掃過區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C、D在圓上,=,過點C作CE⊥AD延長線于點E.
(1)求證:CE是⊙O的切線;
(2)若BC=3,AC=4,求CE和AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com