【題目】如圖,直線PM切⊙O于點M,直線PO交⊙O于A、B兩點,弦AC∥PM,連接OM、BC.求證:

(1)△ABC∽△POM;
(2)2OA2=OPBC.

【答案】
(1)證明:∵直線PM切⊙O于點M,

∴∠PMO=90°,

∵弦AB是直徑,

∴∠ACB=90°,

∴∠ACB=∠PMO,

∵AC∥PM,

∴∠CAB=∠P,

∴△ABC∽△POM;


(2)證明:∵△ABC∽△POM,

又AB=2OA,OA=OM,

,

∴2OA2=OPBC.


【解析】(1)因為PM切⊙O于點M,所以∠PMO=90°,又因為弦AB是直徑,所以∠ACB=∠PMO=90°,再有條件弦AC∥PM,可證得∠CAB=∠P,進而可證得△ABC∽△POM;(2)由(1)可得 ,又因為AB=2OA,OA=OM;所以2OA2=OPBC.
【考點精析】本題主要考查了切線的性質(zhì)定理的相關(guān)知識點,需要掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小明同學在學習了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是(  )

A. 角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上

B. 角平分線上的點到這個角兩邊的距離相等

C. 三角形三條角平分線的交點到三條邊的距離相等

D. 以上均不正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學在一次用頻率去估計概率的實驗中,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率繪出的統(tǒng)計圖如圖所示,則符合這一結(jié)果的實驗可能是( )

A.擲一枚正六面體的骰子,出現(xiàn)1點的概率
B.從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率
C.拋一枚硬幣,出現(xiàn)正面的概率
D.任意寫一個整數(shù),它能被2整除的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】溫度與我們的生活息息相關(guān),如圖是一個溫度計實物示意圖,左邊的刻度是攝氏溫度(),右邊的刻度是華氏溫度().設攝氏溫度為x(℃)華氏溫度為y(℉),則yx的一次函數(shù),通過觀察我們發(fā)現(xiàn),溫度計上的攝氏溫度為0℃時,華氏溫度為32℉;攝氏溫度為﹣20℃時,華氏溫度為﹣4℉

請根據(jù)以上信息,解答下列問題

(1)仔細觀察圖中數(shù)據(jù),試求出yx的函數(shù)關(guān)系式;

(2)當攝氏溫度為﹣5℃時,華氏溫度為多少?

(3)當華氏溫度為59℉時,攝氏溫度為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AC交⊙O于E點,BC交⊙O于D點,CD=BD,∠C=70°.現(xiàn)給出以下四種結(jié)論:①∠A=45°;②AC=AB;③AE=BE;④CEAB=2BD2 . 其中正確結(jié)論的序號是(

A.①②
B.②③
C.②④
D.③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于函數(shù)y= ,下列說法錯誤的是( )
A.這個函數(shù)的圖象位于第一、第三象限
B.當x>0時,y隨x的增大而增大
C.這個函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形
D.當x<0時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是∠ABC的平分線,DECB,交AB于點EA=45°,BDC=60°.BDE各內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系網(wǎng)格中,△ABC的頂點都在格點上,點C坐標(0,﹣1).

(1)作出△ABC關(guān)于原點對稱的△A1B1C1 , 并寫出點A1的坐標;
(2)把△ABC繞點C逆時針旋轉(zhuǎn)90°,得△A2B2C,畫出△A2B2C,并寫出點A2的坐標;
(3)直接寫出△A2B2C的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】太原市公共自行車的建設速度、單日租騎量等四項指標穩(wěn)居全國首位.公共自行車車樁的截面示意圖如圖所示,AB⊥AD,AD⊥DC,點B,C在EF上,EF∥HG,EH⊥HG,AB=75cm,AD=24cm,BC=25cm,EH=4cm,則點A到地面的距離是 cm.

查看答案和解析>>

同步練習冊答案