【題目】如圖,□ABCD中,AE⊥BD于點E,CF⊥BD于點F.
(1)求證:BF=DE;
(2)如果∠ABC=75°, ∠DBC=30°,BC=2,求BD的長.
【答案】(1)證明見解析;(2) +1.
【解析】
(1)根據(jù)矩形的性質(zhì)和已知條件證得△ADE≌△CBF,再利用全等三角形的性質(zhì)即可證明;
(2)先根據(jù)矩形的性質(zhì)、勾股定理等知識求得AE的長,進而求得DE和BD的長.
(1)證明:∵□ABCD,
∴AD∥BC,AD=BC.
∴∠ADE=∠CBF.
∵AE⊥BD于點E,CF⊥BD于點F,
∴∠AED=∠CFB=90°.
在△ADE和△CBF中,
∠AED=∠BFC,∠ADE=∠CBF,|AD=BC
∴△ADE≌△CBF(AAS)
∴DE=BF
(2)解:∵∠ABC=75°,∠DBC=30°,
∴∠ABE=750-30°=45.
∵AB∥CD,
∴∠ABE=∠BDC=45°,
∵AD=BC=2, ∠ADE=∠CBF=30°,
∴在Rt△ADE中,AE=1,DE==.
在Rt△AEB中,∠ABE=∠BAE=45°
故AE=BE=1.則BD= +1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,分別以AB、AD為邊作等邊△ABE和等邊△ADF,分別連接CE,CF和EF,則下列結論,一定成立的個數(shù)是( 。
①△CDF≌△EBC;
②△CEF是等邊三角形;
③∠CDF=∠EAF;
④CE∥DF
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解學生對“垃圾分類”知識的了解程度,某學校對本校學生進行抽樣調(diào)查,并繪制統(tǒng)計圖,其中統(tǒng)計圖中沒有標注相應人數(shù)的百分比.請根據(jù)統(tǒng)計圖回答下列問題:
(1)求“非常了解”的人數(shù)的百分比.
(2)已知該校共有1200名學生,請估計對“垃圾分類”知識達到“非常了解”和“比較了解”程度的學生共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,A(-2,1),B(-4,-2),C(-1,-3),△A′B′C′是△ABC平移之后得到的圖象,并且C的對應點C′的坐標為(4,1)
(1)A′、B′兩點的坐標分別為A′______,B′______;
(2)作出△ABC平移之后的圖形△A′B′C′;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】黨的十八大提出,倡導富強、民主、文明、和諧,倡導自由、平等、公正、法治,倡導愛國、敬業(yè)、誠信、友善,積極培育和踐行社會主義核心價值觀,這24個字是社會主義核心價值觀的基本內(nèi)容.其中:
“富強、民主、文明、和諧”是國家層面的價值目標;
“自由、平等、公正、法治”是社會層面的價值取向;
“愛國、敬業(yè)、誠信、友善”是公民個人層面的價值準則.
小光同學將其中的“文明”、“和諧”、“自由”、“平等”的文字分別貼在4張硬紙板上,制成如右圖所示的卡片.將這4張卡片背面朝上洗勻后放在桌子上,從中隨機抽取一張卡片,不放回,再隨機抽取一張卡片.
(1)小光第一次抽取的卡片上的文字是國家層面價值目標的概率是 ;
(2)請你用列表法或畫樹狀圖法,幫助小光求出兩次抽取卡片上的文字一次是國家層面價值目標、一次
是社會層面價值取向的概率(卡片名稱可用字母表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,AD=10.
(1)E是CD上的點,將△ADE沿折痕AE折疊,使點D落在BC邊上點F處.求DE的長;
(2)點P是線段CB延長線上的點,連接PA,若△PAF是等腰三角形,求PB的長;
(3)M是AD上的動點,在DC上存在點N,使△MDN沿折痕MN折疊,點D落在BC邊上點T處,請直接寫出線段CT長度的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根為x=2019,則一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根為( 。
A.B.2020C.2019D.2018
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10,若將△PAC繞點A逆時針旋轉后得到△P′AB.
(1)求點P與點P′之間的距離;
(2)求∠APB的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由6個大小相同的小正方形組成的方格中,設每個小正方形的邊長均為1.
(1)如圖①,,,是三個格點(即小正方形的頂點),判斷與的位置關系,并說明理由;
(2)如圖②,連接三格和兩格的對角線,求的度數(shù)(要求:畫出示意圖,并寫出證明過程).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com