【題目】如圖,在四邊形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的長和四邊形ABCD的面積.
【答案】BC的長為12,四邊形ABCD的面積為120
【解析】試題分析:根據(jù)勾股定理求得OA的長,再根據(jù)對角線互相平分的四邊形是平行四邊形證明四邊形ABCD是平行四邊形,從而根據(jù)平行四邊形的對邊相等就可求得BC的長;根據(jù)平行四邊形的面積公式可以求得它的面積.
試題解析:在△AOD中,∠ADB=90°,AD=12,0D=5,
根據(jù)勾股定理,得
OA2=OD2+AD2=52+122=169,
∴OA=13.
∵AC=26,OA=13,
∴OA=OC,
又DO=OB,
∴四邊形ABCD為平行四邊形,
∴AD=BC=12;
∵∠ADB=90°,
∴AD⊥BD,
∴S四邊形ABCD=ADBD=12×10=120,
答:BC的長為12,四邊形ABCD的面積為120.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC,BD相交于O點,點P是線段AD上一動點(不與點D重合),PO的延長線交BC于Q點.
(1)求證:四邊形PBQD為平行四邊形.
(2)若AB=3cm,AD=4cm,P從點A出發(fā).以1cm/s的速度向點D勻速運動.設點P的運動時間為ts,問:四邊形PBQD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家體育用品商店出售同樣的乒乓球和乒乓拍,乒乓球拍每幅定價20元,乒乓球每盒定價5元,現(xiàn)兩家商店搞促銷活動.甲店:每買一副球拍送一盒乒乓球;乙店:按定價的8折優(yōu)惠.某班級需購球拍4副,乒乓球若干盒(不少于4盒).
(1)設購買乒乓球盒數(shù)為(盒),在甲店購買的付款數(shù)為(元);在乙店購買的付款數(shù)為(元),分別寫出和與的函數(shù)關系式,并寫出定義域.
(2)就乒乓球的盒數(shù)討論去哪家購買合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】商貿(mào)公司購進某種水果的成本為20元/kg,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價p(元/kg)與時間t(天)之間的函數(shù)關系式為p=,且其日銷售量y(kg)與時間t(天)的關系如表:
時間t(天) | 1 | 3 | 6 | 10 | 20 | 40 | … |
日銷售量y(kg) | 118 | 114 | 108 | 100 | 80 | 40 | … |
(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關系,試求在第30天的日銷售量是多少?
(2)問哪一天的銷售利潤最大?最大日銷售利潤為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E在邊BC上(點E不與點B重合),連接AE,過點B作BF⊥AE于點F,交CD于點G.
(1)求證:△ABF∽△BGC;
(2)若AB=2,G是CD的中點,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形面積為,延長至點,使得,以為邊在正方形另一側(cè)作菱形,其中,依次延長類似以上操作再作三個形狀大小都相同的菱形,形成風車狀圖形,依次連結(jié)點則四邊形的面積為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心,cm為半徑的圓與△ABC的邊相切(切點在邊上),請寫出t可取的一切值 (單位:秒)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AB⊥AC,點E是BC的中點,AE與BD交于點F,且F是AE的中點.
(Ⅰ)求證:四邊形AECD是菱形;(Ⅱ)若AC=4,AB=5,求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com