【題目】在矩形ABCD中,AB8cm,BC6cm,點P從點A出發(fā),沿AB邊向點B以每秒2cm的速度移動,同時點Q從點D出發(fā)沿DA邊向點A以每秒1cm的速度移動,PQ其中一點到達終點時,另一點隨之停止運動.設(shè)運動時間為t秒.回答下列問題:

(1)如圖,幾秒后△APQ的面積等于5cm2

(2)如圖,若以點P為圓心,PQ為半徑作⊙P.在運動過程中,是否存在t值,使得點C落在⊙P上?若存在,求出t的值;若不存在,請說明理由.

(3)如圖,若以Q為圓心,DQ為半徑作⊙Q,當(dāng)⊙QAC相切時

t的值.

如圖,若點E是此時⊙Q上一動點,FBE的中點,請直接寫出CF的最小值.

【答案】(1)1秒后△APQ的面積為5;(2)當(dāng)t=﹣10+2時,點C落在⊙P上;(3)①;②CF的最小值為

【解析】

1)利用三角形的面積公式構(gòu)建方程即可解決問題.

2)如圖②中,連接PC,根據(jù)PQ=PC,利用勾股定理構(gòu)建方程即可解決問題.

3)①如圖③中,設(shè)⊙QAC相切于點H,連接QH.在Rt△AQH中,利用勾股定理構(gòu)建方程即可解決問題.

②如圖④中,連接QE,BQ,取BQ的中點M,連接FM,CM,作MNCDN.求出CM,MF,根據(jù)CF≥CM-MF可即可解決問題.

(1)由題意:AP2t,DQt.則AQ6t

×2t(6t)5,

整理得t26t+50,

解得t15(舍棄),

∴1秒后△APQ的面積為5

(2)如圖中,連接PC

∵⊙P經(jīng)過點C,

∴PQPC,

∵PA2+AQ2PB2+BC2,

∴4t2+(6t)2(82t)2+62

解得t=﹣10+2或﹣102 (舍棄),

當(dāng)t=﹣10+2時,點C落在⊙P上.

(3)①如圖中,設(shè)⊙QAC相切于點H,連接QH

∵CDCH是圓的切線,

∴CDCH8,

∵QDQHt,AC10,

∴AH2

∵QH⊥AC,

∴∠AHQ90°

∴AQ2HQ2+AH2,

∴(6t)2t2+22,

∴t,

∴t時,⊙QAC相切.

如圖中,連接QEBQ,取BQ的中點M,連接FM,CM,作MN⊥CDN

∵MQMB,FBFE,

∴FMEQDQ,

∵AD∥MN∥BCQMMB,

∴DNNC4,MN (DQ+BC),

∴CM

∵CF≥CMFN,

∴CF≥,

∴CF的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DAC上一點,BEAC,BEAD,AE分別交BDBC于點F、G,∠1=∠2.若DF8,FG4,則GE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x22x+m10

1)若方程有兩個不相等的實數(shù)根,求m的取值范圍;

2)若方程有一個實數(shù)根是5,求m的值及此時方程的另一個根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx22x+c的頂點A在直線lyxa上,點D3,0)為拋物線上一點.

1)求a的值;

2)拋物線與y軸交于點B,試判斷△ABD的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知、兩點是直線軸的正半軸,軸的正半軸的交點,如果,的長分別是x2-14x+48=0的兩個根,射線平分軸于點,

1)求的長.

2)求點的坐標(biāo).

3)在坐標(biāo)平面內(nèi)找點,使,四個點為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2﹣4x+c的圖象經(jīng)過坐標(biāo)原點,與x軸交于點A﹣40).

1)求二次函數(shù)的解析式;

2)在拋物線上存在點P,滿足SAOP=8,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A.微信、B.支付寶、C.現(xiàn)金、D.其他.該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次一共調(diào)查了多少名購買者?

(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為________度;

(3)若該超市這一周內(nèi)有1800名購買者,請你估計使用AB兩種支付方式的購買者共有多少名?

(4) 現(xiàn)隨機抽取甲、乙兩名購買者進行調(diào)查,試用列表或樹形圖的方法求抽取的兩人恰好都是用微信支付概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,點P是半徑OB上一動點(不與OB重合),過點P作射線lAB,分別交弦BC,D、E兩點,在射線l上取點F,使FCFD

1)求證:FC是⊙O的切線;

2)當(dāng)點E的中點時,

若∠BAC60°,判斷以O,B,E,C為頂點的四邊形是什么特殊四邊形,并說明理由;

,且AB20,求OP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀念品生產(chǎn)訂單,按要求在15天內(nèi)完成,約定這批紀念品的出廠價為每件20元,設(shè)第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關(guān)系,部分數(shù)據(jù)如表:

天數(shù)(x)

1

3

6

10

每件成本p(元)

7.5

8.5

10

12

任務(wù)完成后,統(tǒng)計發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關(guān)系:y=,

設(shè)李師傅第x天創(chuàng)造的產(chǎn)品利潤為W元.

(1)直接寫出p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:

(2)求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?

(3)任務(wù)完成后.統(tǒng)計發(fā)現(xiàn)平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當(dāng)天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?

查看答案和解析>>

同步練習(xí)冊答案