分析 (1)根據(jù)等腰三角形的性質(zhì)得到∠AED=∠ADE,由于∠ECO+∠AED=90°,∠DBO+∠BDO=90°,∠ADE=∠BDO,求得∠ECO=∠DBO,根據(jù)等腰三角形的判定即可得到結(jié)論;
(2)過F作FE⊥x軸于E,由(1)知∠1=∠2,等量代換得到1=∠3,推出△BOD≌△CEF,根據(jù)全等三角形的性質(zhì)得到BO=CE,DO=EF,通過△DOG≌△FEG,得到OG=GE,于是得到OG=$\frac{1}{2}$OE,即可得到結(jié)論.
解答 解:(1)∵AD=AE,
∴∠AED=∠ADE,
∵∠ECO+∠AED=90°,∠DBO+∠BDO=90°,∠ADE=∠BDO,
∴∠ECO=∠DBO,
∴AB=AC;
(2)過F作FE⊥x軸于E,由(1)知∠1=∠2,
∵∠2=∠3,
∴∠1=∠3,
在△BDO與△CEF中,
$\left\{\begin{array}{l}{∠1=∠3}\\{∠BOD=∠CEF}\\{BD=CF}\end{array}\right.$,
∴△BOD≌△CEF,
∴BO=CE,DO=EF,
在△DOG與△FEG中,
$\left\{\begin{array}{l}{∠DGO=∠FGE}\\{∠DOG=∠FEG}\\{DO=EF}\end{array}\right.$,
∴△DOG≌△FEG,
∴OG=GE,
∴OG=$\frac{1}{2}$OE,
∵BO=CE,
∴BO+OC=CE+OC,
即BC=OE,
∴OG=$\frac{1}{2}$OE=$\frac{1}{2}$BC=$\frac{1}{2}×4=2$,
即OG不變.
點(diǎn)評 本題考查了全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),正確的作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 21 | C. | 18 | D. | 15 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{15}{4}$ | B. | $\frac{15}{3}$ | C. | 5 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com