【題目】如圖,已知平行四邊形ABCD中,AE⊥BC于點E,以點B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時針旋轉(zhuǎn),得到△BA′E′,連接DA′若∠ADC=60°,∠ADA′=45°,則∠DA′E′=______度.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸,y軸上,頂點B在第一象限,AB=1.將線段OA繞點O按逆時針方向旋轉(zhuǎn)60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過P,B兩點,則k的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,
(1)求DE的長;
(2)過點EF作EF⊥CE,交AB于點F,求BF的長;
(3)過點E作EG⊥CE,交CD于點G,求DG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,O為坐標原點,點A坐標為(2,0),以OA為邊在第一象限內(nèi)作等邊△OAB,C為x軸正半軸上的一個動點(OC>2),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,直線DA交y軸于E點.
(1)求證:△OBC≌△ABD
(2)隨著C點的變化,直線AE的位置變化嗎?若變化,請說明理由;若不變,請求出直線AE的解析式.
(3)以線段BC為直徑作圓,圓心為點F,當(dāng)C點運動到何處時,直線EF∥直線BO;這時⊙F和直線BO的位置關(guān)系如何?請給予說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點A(m,6),B(6,1)在反比例函數(shù)圖象上,作直線AB,連接OA、OB.
(1)求反比例函數(shù)的表達式和m的值;
(2)求△AOB的面積;
(3)如圖2,E是線段AB上一點,作AD⊥x軸于點D,過點E作x軸的垂線,交反比例函數(shù)圖象于點F,若EF=AD,求出點E的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載,某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于24米,在l上點D的同側(cè)取點A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(結(jié)果保留根號);
(2)已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】曉東在解一元二次方程時,發(fā)現(xiàn)有這樣一種解法:
如:解方程.
解:原方程可變形,得
.
,
,
直接開平方并整理,得,.
我們稱曉東這種解法為“平均數(shù)法”.
(1)下面是曉東用“平均數(shù)法”解方程時寫的解題過程.
.
,
.
直接開平方并整理,得,.
上述過程中的“□”,“○”,“☆”,“¤”表示的數(shù)分別為________,________,________,________.
(2)請用“平均數(shù)法”解方程:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點M(﹣5,3)分別作x軸,y軸的垂線與反比例函數(shù)y=的圖象交于A,B兩點,若四邊形MAOB的面積為24,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“數(shù)學(xué)來源于生活,又運用于生活”曹老師為了了解所教班級學(xué)生利用數(shù)學(xué)知識解決實際問題的能力,編制若干問題對全班學(xué)生進行了一次測試,并將測試結(jié)果分成四類,A特別強:B:強;C:一般:D較弱以下是由調(diào)查測試結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖完成以下解答.
(1)曹老師的班級共有 名學(xué)生;
(2)將下面條形統(tǒng)計圖的C類部分補充完整;
(3)扇形統(tǒng)計圖中,D類對應(yīng)的圓心角為多少度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com