【題目】在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的數(shù)學(xué)問題:今有鳧(鳧:野鴨)起南海,七日至北海;雁起北海,九日至南海.今鳧雁俱起,問何日相逢?意思是:野鴨從南海起飛,7天飛到北海;大雁從北海起飛,9天飛到南海.野鴨與大雁從南海和北海同時起飛,經(jīng)過幾天相遇.設(shè)野鴨與大雁從南海和北海同時起飛,經(jīng)過x天相遇,根據(jù)題意,下面所列方程正確的是( 。

A. (9-7)x=1 B. (9-7)x=1 C. +)x=1 D. -)x=1

【答案】C

【解析】把兩地距離看為1,野鴨每天飛,大雁每天飛,根據(jù)相遇問題的路程關(guān)系可列出方程.

把兩地距離看為1,野鴨每天飛,大雁每天飛,

設(shè)經(jīng)過x天相遇,根據(jù)題意,得

+x=1

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五個點,拋物線y=a(x-1)2+k(a>0)經(jīng)過其中的三個點.
(1)求證:C、E兩點不可能同時在拋物線y=a(x-1)2+k(a>0)上;
(2)點A在拋物線y=a(x-1)2+k(a>0)上嗎?為什么?
(3)求a和k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,點E,O,F(xiàn)分別為AB,AC,AD的中點,連接CE,CF,OE,OF.

(1)求證:△BCE≌△DCF;

(2)當(dāng)AB與BC滿足什么關(guān)系時,四邊形AEOF是正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD=AB= CD,線段AB、CD的中點EF之間距離是10cm,AB,CD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016·天津)公司有330臺機器需要一次性運送到某地計劃租用甲、乙兩種貨車共8,已知每輛甲種貨車一次最多運送機器45租車費用為400,每輛乙種貨車一次最多運送機器30,租車費用為280

(1)設(shè)租用甲種貨車x(x為非負整數(shù)),試填寫表格:

表一

租用甲種貨車的數(shù)量 /

3

7

x

租用的甲種貨車最多運送機器的數(shù)量 /

135

租用的乙種貨車最多運送機器的數(shù)量 /

150

表二:

租用甲種貨車的數(shù)量 /

3

7

x

租用甲種貨車的費用/

2800

租用乙種貨車的費用 /

280

(2)若租用甲種貨車x輛時,設(shè)兩種貨車的總費用為y試確定能完成此項運送任務(wù)的最節(jié)省費用的租車方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)ykxb的圖象經(jīng)過A(2,1)B(1,3)兩點,并且交x軸于點C,交y軸于點D.

1)求該一次函數(shù)的解析式;

2)求點C和點D的坐標;

3)求△AOB的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

A、B在數(shù)軸上分別表示兩個數(shù)ab,AB兩點間的距離記為|AB|,O表示原點.當(dāng)A、B兩點中有一點在原點時,不妨設(shè)點A為原點,如圖1,則|AB|=|OB|=|b|=|a-b|;當(dāng)A、B兩點都不在原點時,

①如圖2,若點A、B都在原點的右邊時,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;

②如圖3,若點AB都在原點的左邊時,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;

③如圖4,若點A、B在原點的兩邊時,|AB|=|OB|+|OA|=|b|+|a|=-b+a=|a-b|.

回答下列問題:

(1)綜上所述,數(shù)軸上AB兩點間的距離為|AB|=______.

(2)若數(shù)軸上的點A表示的數(shù)為3,點B表示的數(shù)為-4,則A、B兩點間的距離為______;

(3)若數(shù)軸上的點A表示的數(shù)為x,點B表示的數(shù)為-2,則|AB|=______,若|AB|=3,則x的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=BC,PABC內(nèi)一點,且PA=3,PB=1,PC= CD=2,CDCP,求∠BPC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關(guān)于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點A(﹣1,0)及點B.

(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案