(2004•瀘州)如圖,在四邊形ABCD中,AD=CB,∠ACB=∠CAD.求證:AB=CD.

【答案】分析:要證AB=CD,只需證四邊形ABCD是平行四邊形,由已知可證AD∥BC,AD=BC,所以四邊形ABCD是平行四邊形.
解答:證明1:在△ABC和△CDA中
∵AD=BC,∠ACB=∠CAD,AC=AC,
∴△ABC≌△CDA   (SAS).
∴AB=CD.
證明2:∵∠ACB=∠CAD,
∴AD∥BC.
∵AD=BC,
∴四邊形ABCD是平行四邊形.
∴AB=CD.
點評:平行四邊形的判定方法共有五種,應(yīng)用時要認(rèn)真領(lǐng)會它們之間的聯(lián)系與區(qū)別,同時要根據(jù)條件合理、靈活地選擇方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•瀘州)如圖,半徑為6.5的⊙O′經(jīng)過原點O,并且與x軸、y軸分別交于A、B兩點,線段OA、OB(OA>OB)的長分別是方程x2+kx+60=0的兩根.
(1)求A、B兩點的距離;
(2)求點A和點B的坐標(biāo);
(3)已知點C在劣弧OA上,連接BC交OA于D,當(dāng)OC2=CD•BC時,求點C的坐標(biāo);
(4)在⊙O′上是否存在點P,使△ABD的面積等于△POD的面積,即S△ABD=S△POD?若存在,請求出點P的坐標(biāo);如果不存在,請說明理由.注:拋物線y=ax2+bx+c(a≠0)的頂點為(-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年四川省瀘州市中考數(shù)學(xué)試卷B卷(解析版) 題型:解答題

(2004•瀘州)如圖,半徑為6.5的⊙O′經(jīng)過原點O,并且與x軸、y軸分別交于A、B兩點,線段OA、OB(OA>OB)的長分別是方程x2+kx+60=0的兩根.
(1)求A、B兩點的距離;
(2)求點A和點B的坐標(biāo);
(3)已知點C在劣弧OA上,連接BC交OA于D,當(dāng)OC2=CD•BC時,求點C的坐標(biāo);
(4)在⊙O′上是否存在點P,使△ABD的面積等于△POD的面積,即S△ABD=S△POD?若存在,請求出點P的坐標(biāo);如果不存在,請說明理由.注:拋物線y=ax2+bx+c(a≠0)的頂點為(-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2004•瀘州)如圖,⊙O為△ABC的外接圓,且AB=AC,過點A的直線交⊙O于D,交BC延長線于F,DE是BD的延長線,連接CD.
(1)求證:∠EDF=∠CDF;
(2)求證:AB2=AF•AD;
(3)若BD是⊙O的直徑,且∠EDC=120°,BC=6cm,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年四川省瀘州市中考數(shù)學(xué)試卷A卷(解析版) 題型:選擇題

(2004•瀘州)如圖,從邊長為10的正方體的一頂點處挖去一個邊長為1的小正方體,則剩下圖形的表面積為( )

A.600
B.599
C.598
D.597

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年貴州省貴陽市烏當(dāng)區(qū)第二中學(xué)中考題型試卷(解析版) 題型:選擇題

(2004•瀘州)如圖,從邊長為10的正方體的一頂點處挖去一個邊長為1的小正方體,則剩下圖形的表面積為( )

A.600
B.599
C.598
D.597

查看答案和解析>>

同步練習(xí)冊答案