【題目】如圖中的折線(xiàn)ABC表示某汽車(chē)的耗油量y(單位:L/km)與速度x(單位:km/h)之間的函數(shù)關(guān)系(30≤x≤120),已知線(xiàn)段BC表示的函數(shù)關(guān)系中,該汽車(chē)的速度每增加1km/h,耗油量增加0.002L/km.
(1)當(dāng)速度為50km/h、100km/h時(shí),該汽車(chē)的耗油量分別為L/km、 L/km.
(2)求線(xiàn)段AB所表示的y與x之間的函數(shù)表達(dá)式.
(3)速度是多少時(shí),該汽車(chē)的耗油量最低?最低是多少?
【答案】
(1)0.13;0.14
(2)解:由(1)得:線(xiàn)段AB的解析式為:y=﹣0.001x+0.18
(3)解:設(shè)BC的解析式為:y=kx+b,
把(90,0.12)和(100,0.14)代入y=kx+b中得:
解得 ,
∴BC:y=0.002x﹣0.06,
根據(jù)題意得 解得 ,
答:速度是80km/h時(shí),該汽車(chē)的耗油量最低,最低是0.1L/km.
【解析】解:(1)設(shè)AB的解析式為:y=kx+b, 把(30,0.15)和(60,0.12)代入y=kx+b中得:
解得
∴AB:y=﹣0.001x+0.18,
當(dāng)x=50時(shí),y=﹣0.001×50+0.18=0.13,
由線(xiàn)段BC上一點(diǎn)坐標(biāo)(90,0.12)得:0.12+(100﹣90)×0.002=0.14,
∴當(dāng)x=100時(shí),y=0.14,
所以答案是:0.13,0.14;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是△ABC的角平分線(xiàn),點(diǎn)E,F(xiàn)分別在BC、AB上,且DE∥AB,EF∥AC.
(1)求證:BE=AF;
(2)若∠ABC=60°,BD=6,求四邊形ADEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是將拋物線(xiàn)y=﹣x2平移后得到的拋物線(xiàn),其對(duì)稱(chēng)軸為x=1,與x軸的一個(gè)交點(diǎn)為A(﹣1,0),另一個(gè)交點(diǎn)為B,與y軸的交點(diǎn)為C.
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)若點(diǎn)N為拋物線(xiàn)上一點(diǎn),且BC⊥NC,求點(diǎn)N的坐標(biāo);
(3)點(diǎn)P是拋物線(xiàn)上一點(diǎn),點(diǎn)Q是一次函數(shù)y= x+ 的圖象上一點(diǎn),若四邊形OAPQ為平行四邊形,這樣的點(diǎn)P、Q是否存在?若存在,分別求出點(diǎn)P,Q的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將ABCD沿EF對(duì)折,使點(diǎn)A落在點(diǎn)C處,若∠A=60°,AD=4,AB=8,則AE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時(shí),連接B1B,取BB1的中點(diǎn)D,連接A1D,則A1D的長(zhǎng)度是( )
A.
B.2
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)點(diǎn)F處,連接CF,則CF的長(zhǎng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC和△DCE是兩個(gè)全等的等腰三角形,BC,CE為底邊.
(1)將圖1中的△DCE繞C點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)至∠BCE=∠ACB的位置,分別延長(zhǎng)AB,DE交于點(diǎn)F(如圖2),此時(shí),四邊形BCEF為何種四邊形?請(qǐng)證明你的結(jié)論;
(2)如果將圖1中的△DCE繞C點(diǎn)順時(shí)針旋轉(zhuǎn)至∠BCE=2∠ACB的位置,連接AD,BE(如圖3),證明四邊形ABED為矩形;
(3)在(2)的條件下,四邊形ABED有無(wú)可能成為正方形?如果有可能成為正方形,求出∠ABC的度數(shù)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2+px+q(p<0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣1),△ABC的面積為 .
(1)求該二次函數(shù)的關(guān)系式;
(2)過(guò)y軸上的一點(diǎn)M(0,m)作y軸的垂線(xiàn),若該垂線(xiàn)與△ABC的外接圓有公共點(diǎn),求m的取值范圍;
(3)在該二次函數(shù)的圖象上是否存在點(diǎn)D,使四邊形ACBD為直角梯形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com