【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn),點(diǎn).

(Ⅰ)如圖①,求AB的長;

(Ⅱ)如圖②,把圖①中的繞點(diǎn)B順時針旋轉(zhuǎn),使點(diǎn)O的對應(yīng)點(diǎn)AM恰好落在OA延長線上,N是點(diǎn)A旋轉(zhuǎn)后的對應(yīng)點(diǎn).

①求證:;②求點(diǎn)N的坐標(biāo);

(Ⅲ)點(diǎn)COB的中點(diǎn),點(diǎn)D為線段OA上的動點(diǎn),在繞點(diǎn)B順時針旋轉(zhuǎn)過程中,點(diǎn)D的對應(yīng)點(diǎn)是P,求線段CP長的取值范圍(直接寫出結(jié)果).

【答案】(Ⅰ);(Ⅱ)①見解析,②;(Ⅲ).

【解析】

)過A,垂足為C,根據(jù)點(diǎn),點(diǎn)得出ACBC的長,再根據(jù)勾股得出AB的長

)①根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)等腰三角形的性質(zhì)可得,從而得出,繼而得出結(jié)論

②過N軸,垂足為E.連接AN,根據(jù)旋轉(zhuǎn)的性質(zhì)和一組對邊平行且相等的四邊形是平行四邊形得出四邊形AOBN是平行四邊形,得出,再根據(jù)勾股定理求出BE,從而求出點(diǎn)N的坐標(biāo);

)過BCPAOP,以B為圓心BP為半徑畫圓交BCP1,和以B為圓心BO為半徑畫圓交OB的延長線于P2,得出CP的最大和最小值解答即可;

解:()過A,垂足為C,

.

中,

)①由(I)得

由旋轉(zhuǎn)得

②過N軸,垂足為E.連接AN

,

∴四邊形AOBN是平行四邊形。

中,.

III)如圖,過BCPAOP,以B為圓心BP為半徑畫圓交BCP1, CP1有最小值,

此時

BP=,∴BP1=,
CP1的最小值為 -3=;

B為圓心BO為半徑畫圓交OB的延長線于P2,,CP 2有最大值;
此時CP2=BC +BP2=3+6=9

線段CP長的取值范圍: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙中,為直徑,分別切⊙于點(diǎn)、

1)如圖①,若,求的大小;

2)如圖②,過點(diǎn),交于點(diǎn),交⊙于點(diǎn),若,求的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c+1。

1當(dāng)b=1時,求這個二次函數(shù)的對稱軸的方程;

2c=b22b,問:b為何值時,二次函數(shù)的圖象與x軸相切?

3若二次函數(shù)的圖象與x軸交于點(diǎn)Ax1,0),Bx20),且x1x2,b0,與y軸的正半軸交于點(diǎn)M,以AB為直徑的半圓恰好過點(diǎn)M,二次函數(shù)的對稱軸lx軸、直線BM、直線AM分別交于點(diǎn)D、EF,且滿足=,求二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在△ABC和△EDC中,ACCECBCD,∠ACB=∠ECD,ABCE交于F,EDAB、BC分別交于M、H

1)求證:CFCH;

2)如圖(2),△ABC不動,將△EDC繞點(diǎn)C旋轉(zhuǎn)到∠BCE=時,試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,DBC延長線上一點(diǎn),,E,F分別是BC,AD的中點(diǎn),若,則線段EF的長是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBCDBD=AD,DG=DCE,F分別是BG,AC的中點(diǎn).

1)求證:DE=DF,DEDF

2)連接EF,若AC=10,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗江布農(nóng)鈴,是一種極富特色的、形狀同馬幫的馬鈴的掛件.這種馬幫文化商品,是純手工制作.精致小巧的青銅鈴鐺下系有一塊圓形木塊,手繪著各種各樣的畫.某商店需要購進(jìn)甲、乙兩種布農(nóng)鈴共300件,一件甲種布農(nóng)鈴進(jìn)價為340元,售價為400元,一件乙種布農(nóng)鈴進(jìn)價為380元,售價為460.(注:利潤=售價-進(jìn)價)

1)若商店計(jì)劃銷售完這批布農(nóng)鈴后能獲利21600元,問甲、乙兩種布農(nóng)鈴應(yīng)分別購進(jìn)多少件?

2)若商店計(jì)劃投入資金110000元,則能購進(jìn)甲種布農(nóng)鈴多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任大叔決定在承包的荒山上種櫻桃樹,第一次用1000元購進(jìn)了一批樹苗,第二次又用1000元購進(jìn)該種樹苗,但這次每棵樹苗的進(jìn)價是第一次進(jìn)價的2,購進(jìn)數(shù)量比第次少了100棵;

(1)求第一次每棵樹苗的進(jìn)價是多少元?

(2)一年后,樹苗的成活率為85%,每棵櫻桃樹平均產(chǎn)櫻桃30,任大叔將兩批櫻桃樹所產(chǎn)櫻桃按同一價格全部銷售完畢后,獲利不低于89800,求每斤櫻桃的售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)a≠0)的圖象如圖所示,則下列命題中正確的是(  )

A. a bc

B. 一次函數(shù)y=ax +c的圖象不經(jīng)第四象限

C. mam+b+bam是任意實(shí)數(shù))

D. 3b+2c0

查看答案和解析>>

同步練習(xí)冊答案