【題目】 已知∠BAC=36°,△A1B1A2,△A2B2A3,△A3B3A4,…,△AnBnAn+1都是頂角為36°的等腰三角形,即∠A1B1A2=∠A2B2A3=∠A3B3A4=…=∠AnBnAn+1=36°,點A1,A2,A3,…,An在射線AC上,點B1,B2,B3,…,Bn在射線AB上,若A1A2=1,則線段A2018A2019的長為______.
【答案】
【解析】
先證明△A2B1A1∽△A2AB1,設AA1=A1B1=B1A2=x,則有=,從而可求出x的值,同理可得A2A3的長,A3A4的長,…,根據規(guī)律可得出結果.
解:∵∠A=∠A1B1A2=36°,A1B1=A2B1,
∴∠AA2B1=∠B1A1A2=72°,
∴∠A=∠AB1A1=36°,
∴AA1=A1B1=B1A2,△A2B1A1∽△A2AB1,
設AA1=A1B1=B1A2=x,
∴=,
∴=,
解得x=(舍去負根),
同理可得:AA2=A2B2=B2A3=1+,
設A2A3=y,
∵△A3B2A2∽△A3AB2,
∴=,
∴=,
解得:y=,即A2A3=,
同理可得:A3A4=()2,…
∴A2018A2019的長=()2017,
故答案為:.
科目:初中數學 來源: 題型:
【題目】為參加 2020 年“陜西省初中畢業(yè)升學體育與健康考試”,小強同學進行了刻苦的訓練.他在練習立定跳遠時,測得其中 10 次立定跳遠的成績(單位:m)如下表:
成績 | 2.25 | 2.33 | 2.35 | 2.41 | 2.42 |
次數 | 2 | 3 | 2 | 2 | 1 |
這 10 個數據的眾數、中位數依次是( )
A.2.35,2.35B.2.33, 2.35C.3, 2.34D.2.33,2.34
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=mx2﹣4mx+2m+1與x軸交于A(x1,0),B(x2,0)兩點,與y軸交于點C,且x2﹣x1=2.
(1)求拋物線的解析式;
(2)E是拋物線上一點,∠EAB=2∠OCA,求點E的坐標;
(3)設拋物線的頂點為D,動點P從點B出發(fā),沿拋物線向上運動,連接PD,過點P做PQ⊥PD,交拋物線的對稱軸于點Q,以QD為對角線作矩形PQMD,當點P運動至點(5,t)時,求線段DM掃過的圖形面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把正方形ABCD繞點C按順時針方向旋轉45°得到正方形A′B′CD′(此時,點B′落在對角線AC上,點A′落在CD的延長線上),A′B′交AD于點E,連接AA′、CE.
求證:(1)△ADA′≌△CDE;
(2)直線CE是線段AA′的垂直平分線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某保健品廠每天生產A,B兩種品牌的保健品共600瓶,A,B兩種產品每瓶的成本和售價如下表,設每天生產A產品x瓶,生產這兩種產品每天共獲利y元.
A | B | |
成本(元)/瓶 | 50 | 35 |
售價(元)/瓶 | 70 | 50 |
(1)請求出y關于x的函數關系;
(2)該廠每天生產的A,B兩種產品被某經銷商全部訂購,廠家對B產品不變,對A產品進行讓利,每瓶利潤降低元,廠家如何生產可使每天獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了適合不同人群的需求,某公司對每日堅果混合裝進行改革.甲種每袋裝有10克核桃仁,10克巴旦木仁,10克黑加侖;乙種每袋裝有20克核桃仁,5克巴旦木仁,5克黑加侖.甲乙兩種袋裝干果每袋成本價分別為袋中核桃仁、巴旦木仁、黑加侖的成本價之和.已知核桃仁每克成本價0.04元,甲每袋堅果的售價為5.2元,利潤率為,乙種堅果每袋利潤率為,若這兩種袋裝的銷售利潤率達到,則該公司銷售甲、乙兩種袋裝堅果的數最之比是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,交y軸正半軸于C點,D為拋物線的頂點,A(-1,0),B(3,0).
(1)求出二次函數的表達式.
(2)點P在x軸上,且∠PCB=∠CBD,求點P的坐標.
(3)在x軸上方拋物線上是否存在一點Q,使得以Q,C,B,O為頂點的四邊形被對角線分成面積相等的兩部分?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,G是⊙O上兩點,且,過點C的直線CD⊥BG于點D,交BA的延長線于點E,連接BC,交OD于點F.
(1)求證:CD是⊙O的切線;
(2)若,求證:AE=AO;
(3)連接 AD,在(2)的條件下,若CD ,求AD的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com